Skip to main content
Erschienen in: Experimental Mechanics 1/2020

05.09.2019 | Research paper

An Investigation of the Enhanced Fatigue Performance of Low-porosity Auxetic Metamaterials

verfasst von: L. Francesconi, A. Baldi, G. Dominguez, M. Taylor

Erschienen in: Experimental Mechanics | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An experimental and numerical investigation of fatigue life and crack propagation in two-dimensional perforated aluminum structures is presented. Specifically, the performance of positive Poisson’s ratio (PPR) geometries using circular holes is compared to that of auxetic stop-hole and straight-groove hole geometries. Mechanical fatigue testing shows that the considered auxetic structures have more than 20% longer life than the porous PPR structure at the same porosity and peak effective maximum stress despite having holes with larger stress concentrations. Digital image correlation is used to detect crack initiation and damage propagation much earlier than can be detected by the unaided eye. Accompanying finite element analyses reveal that auxetic structures have the advantage over their PPR counterparts by delaying crack initiation, spreading damage over a larger area, and having a stress intensity factor that decreases over a significant range of crack lengths. In addition, numerical simulations suggest that auxetic structures maintain their negative Poisson’s ratios in the presence of cracks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wöhler A (1860) Versuche über die festiykeit eisenbahnwagenuchsen, Zeitschrift für Bauwesen 10 Wöhler A (1860) Versuche über die festiykeit eisenbahnwagenuchsen, Zeitschrift für Bauwesen 10
2.
Zurück zum Zitat Sendeckiyj G (2006) Early railroad accidents and the origins of research on fatigue of metals. In: Nicholas T (ed) High cycle fatigue: a mechanics of materials perspective, Elsevier Sendeckiyj G (2006) Early railroad accidents and the origins of research on fatigue of metals. In: Nicholas T (ed) High cycle fatigue: a mechanics of materials perspective, Elsevier
3.
Zurück zum Zitat Taylor M, Francesconi L, Gerendás M, Shanian A, Carson C, Bertoldi K (2013) Low porosity metallic periodic structures with negative Poisson’s ratio. Adv Mater 26(15):2365–2370CrossRef Taylor M, Francesconi L, Gerendás M, Shanian A, Carson C, Bertoldi K (2013) Low porosity metallic periodic structures with negative Poisson’s ratio. Adv Mater 26(15):2365–2370CrossRef
4.
Zurück zum Zitat Bertoldi K, Vitelli V, Christensen J, van Hecke M (2017) Flexible mechanical metamaterials. Nature Rev 2(17066):1–11 Bertoldi K, Vitelli V, Christensen J, van Hecke M (2017) Flexible mechanical metamaterials. Nature Rev 2(17066):1–11
5.
Zurück zum Zitat Barchiesi E, Spagnuolo M, Placidi L (2018) Mechanical metamaterials: a state of the art. Math Mech Solids. Online Barchiesi E, Spagnuolo M, Placidi L (2018) Mechanical metamaterials: a state of the art. Math Mech Solids. Online
6.
Zurück zum Zitat Bertoldi K (2017) Harnessing instabilities to design tunable architected cellular materials. Annu. Rev. Mater. Res. 47:51–61CrossRef Bertoldi K (2017) Harnessing instabilities to design tunable architected cellular materials. Annu. Rev. Mater. Res. 47:51–61CrossRef
7.
Zurück zum Zitat Kochmann DM, Bertoldi K (2017) Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions. Appl Mech Rev 69(5):050801–050801–24CrossRef Kochmann DM, Bertoldi K (2017) Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions. Appl Mech Rev 69(5):050801–050801–24CrossRef
8.
Zurück zum Zitat dell’Isola F, Seppecher P, Alibert J J, Lekszycki T, Grygoruk R, Pawlikowski M, Steigmann D, Giorgio I, Andreaus U, Turco E, Golaszewski M, Rizzi N, Boutin C, Eremeyev V A, Misra A, Placidi L, Barchiesi E, Greco L, Cuomo M, Cazzani A, Corte A D, Battista A, Scerrato D, Eremeeva I Z, Rahali Y, Ganghoffer J F, Muller W, Ganzosch G, Spagnuolo M, Pfaff A, Barcz K, Hoschke K, Neggers J, Hild F (2018) Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mech Thermodyn. Online dell’Isola F, Seppecher P, Alibert J J, Lekszycki T, Grygoruk R, Pawlikowski M, Steigmann D, Giorgio I, Andreaus U, Turco E, Golaszewski M, Rizzi N, Boutin C, Eremeyev V A, Misra A, Placidi L, Barchiesi E, Greco L, Cuomo M, Cazzani A, Corte A D, Battista A, Scerrato D, Eremeeva I Z, Rahali Y, Ganghoffer J F, Muller W, Ganzosch G, Spagnuolo M, Pfaff A, Barcz K, Hoschke K, Neggers J, Hild F (2018) Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mech Thermodyn. Online
9.
Zurück zum Zitat Lakes R S, Lowe A (2000) Negative Poisson’s ratio foam as seat cushion material. Cell Polym 19:157–167 Lakes R S, Lowe A (2000) Negative Poisson’s ratio foam as seat cushion material. Cell Polym 19:157–167
10.
Zurück zum Zitat Doyoyo M, Hu J W (2006) Plastic failure analysis of an auxetic foam or inverted strut lattice under longitudinal and shear loads. J Mech Phys Solids 54(7):1479–1492MATHCrossRef Doyoyo M, Hu J W (2006) Plastic failure analysis of an auxetic foam or inverted strut lattice under longitudinal and shear loads. J Mech Phys Solids 54(7):1479–1492MATHCrossRef
11.
Zurück zum Zitat Carta G, Cabras L, Brun M (2016) Continuous and discrete microstructured materials with null Poisson’s ratio. J Eur Ceram Soc 36:2183–2192CrossRef Carta G, Cabras L, Brun M (2016) Continuous and discrete microstructured materials with null Poisson’s ratio. J Eur Ceram Soc 36:2183–2192CrossRef
12.
Zurück zum Zitat Laurie S A, Kalamkarov A L, Solyaev Y O, Ustenko A D, Volkov A V (2018) Continuum micro-dilation modeling of auxetic metamaterials. Int J Solids Struct 132–133:188–200CrossRef Laurie S A, Kalamkarov A L, Solyaev Y O, Ustenko A D, Volkov A V (2018) Continuum micro-dilation modeling of auxetic metamaterials. Int J Solids Struct 132–133:188–200CrossRef
13.
Zurück zum Zitat Li T, Hu X, Chen Y, Wang L (2017) Harnessing out-of-plane deformation to design 3d architected lattice metamaterials with tunable Poisson’s ratio. Sci Rep 8949 Li T, Hu X, Chen Y, Wang L (2017) Harnessing out-of-plane deformation to design 3d architected lattice metamaterials with tunable Poisson’s ratio. Sci Rep 8949
14.
Zurück zum Zitat Brighenti R, Spagnoli A, Lanfranchi M, Soncini F (2016) Nonlinear deformation behaviour of auxetic cellular materials with re-entrant lattice structure. Fatigue Fract Engng Mater Struct 39:599–610CrossRef Brighenti R, Spagnoli A, Lanfranchi M, Soncini F (2016) Nonlinear deformation behaviour of auxetic cellular materials with re-entrant lattice structure. Fatigue Fract Engng Mater Struct 39:599–610CrossRef
15.
Zurück zum Zitat Grima J N, Evans K E (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19(17):1563–1565CrossRef Grima J N, Evans K E (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19(17):1563–1565CrossRef
16.
Zurück zum Zitat Grima J, Gatt R (2010) Perforated sheets exhibiting negative Poisson’s ratios. Adv Eng Mater 12:460–464CrossRef Grima J, Gatt R (2010) Perforated sheets exhibiting negative Poisson’s ratios. Adv Eng Mater 12:460–464CrossRef
17.
Zurück zum Zitat Francesconi L, Taylor M, Bertoldi K, Baldi A (2018) Static and modal analysis of low porosity thin metallic auxetic structures using speckle interferometry and digital image correlation. Exp Mech 58(2):283–300CrossRef Francesconi L, Taylor M, Bertoldi K, Baldi A (2018) Static and modal analysis of low porosity thin metallic auxetic structures using speckle interferometry and digital image correlation. Exp Mech 58(2):283–300CrossRef
18.
Zurück zum Zitat Francesconi L, Baldi A, Liang X, Aymerich F, Taylor M (2019) Variable Poisson’s ratio materials for globally stable static and dynamic compression resistance. Extreme Mech Lett 26:1–7CrossRef Francesconi L, Baldi A, Liang X, Aymerich F, Taylor M (2019) Variable Poisson’s ratio materials for globally stable static and dynamic compression resistance. Extreme Mech Lett 26:1–7CrossRef
19.
Zurück zum Zitat Javid F, Liu J, Rafsanjani A, Schaenzer M, Phan M Q, Backman D, Yandt S, Innes M C, Booth-Morrison C, Gerendás M, Scarinci T, Shanian A, Bertoldi K (2017) On the design of porous structures with enhanced fatigue life. Extreme Mech Lett 16:13–17CrossRef Javid F, Liu J, Rafsanjani A, Schaenzer M, Phan M Q, Backman D, Yandt S, Innes M C, Booth-Morrison C, Gerendás M, Scarinci T, Shanian A, Bertoldi K (2017) On the design of porous structures with enhanced fatigue life. Extreme Mech Lett 16:13–17CrossRef
20.
Zurück zum Zitat Carta G, Brun M, Baldi A (2016) Design of a porous material with isotropic negative Poisson’s ratio. Mech Mat 97:67–75CrossRef Carta G, Brun M, Baldi A (2016) Design of a porous material with isotropic negative Poisson’s ratio. Mech Mat 97:67–75CrossRef
21.
Zurück zum Zitat Lakes R S (2017) Negative-Poisson’s-Ratio materials: auxetic solids. Ann Rev Mat Res 47:63–81CrossRef Lakes R S (2017) Negative-Poisson’s-Ratio materials: auxetic solids. Ann Rev Mat Res 47:63–81CrossRef
22.
Zurück zum Zitat Kolken H M A, Zadpoor A A (2017) Auxetic mechanical metamaterials. RSC Adv 7:5111CrossRef Kolken H M A, Zadpoor A A (2017) Auxetic mechanical metamaterials. RSC Adv 7:5111CrossRef
23.
Zurück zum Zitat Liu Y, Hu H (2010) A review on auxetic structures and polymeric materials. Sci Res Essays 5(10):1052–1063 Liu Y, Hu H (2010) A review on auxetic structures and polymeric materials. Sci Res Essays 5(10):1052–1063
24.
Zurück zum Zitat Timoshenko S, Goodier J N (1951) Theory of elasticity, 2nd edn. McGraw-Hill, New YorkMATH Timoshenko S, Goodier J N (1951) Theory of elasticity, 2nd edn. McGraw-Hill, New YorkMATH
25.
Zurück zum Zitat Ritchie R O (1999) Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int J Fracture 100:55–83CrossRef Ritchie R O (1999) Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int J Fracture 100:55–83CrossRef
26.
Zurück zum Zitat Paris P C, Gomez M P, Anderson W E (1961) A rational analytic theory of fatigue. The Trend in Engineering 13:9–14 Paris P C, Gomez M P, Anderson W E (1961) A rational analytic theory of fatigue. The Trend in Engineering 13:9–14
27.
Zurück zum Zitat Rice J R (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386CrossRef Rice J R (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386CrossRef
28.
Zurück zum Zitat Janson J (1978) A continuous damage approach to the fatigue process. Eng Fracture Mech 10:651–657CrossRef Janson J (1978) A continuous damage approach to the fatigue process. Eng Fracture Mech 10:651–657CrossRef
29.
Zurück zum Zitat Bilir O G (1990) The relationship between the parameters c and n of Paris’ law for fatigue crack growth in a SAE 1010 steel. Eng Fracture Mech 36:361–364CrossRef Bilir O G (1990) The relationship between the parameters c and n of Paris’ law for fatigue crack growth in a SAE 1010 steel. Eng Fracture Mech 36:361–364CrossRef
30.
Zurück zum Zitat Park H B, Lee B W (2000) Effect of specimen thickness on fatigue crack growth rate. Nuclear Eng Design 197:197–203CrossRef Park H B, Lee B W (2000) Effect of specimen thickness on fatigue crack growth rate. Nuclear Eng Design 197:197–203CrossRef
31.
Zurück zum Zitat Tanaka K (1974) Fatigue crack propagation from a crack inclined to the cyclic tensile axis. Eng Fracture Mech 6:493–498CrossRef Tanaka K (1974) Fatigue crack propagation from a crack inclined to the cyclic tensile axis. Eng Fracture Mech 6:493–498CrossRef
32.
Zurück zum Zitat Branco R, Antunes F V, Ferreira J A M, Silva J M (2009) Determination of Paris law constants with a reverse engineering technique. Eng Failure Anal 16:631–638CrossRef Branco R, Antunes F V, Ferreira J A M, Silva J M (2009) Determination of Paris law constants with a reverse engineering technique. Eng Failure Anal 16:631–638CrossRef
33.
Zurück zum Zitat Nair P K, Mater J (1979) Fatigue crack growth model for part-through flaws in plates and pipes. J Eng Technol 101:53–58 Nair P K, Mater J (1979) Fatigue crack growth model for part-through flaws in plates and pipes. J Eng Technol 101:53–58
34.
Zurück zum Zitat Lehr K R, Liu H W (1969) Fatigue crack propagation and strain cycling properties. Int J Fracture Mech 5:44–55CrossRef Lehr K R, Liu H W (1969) Fatigue crack propagation and strain cycling properties. Int J Fracture Mech 5:44–55CrossRef
35.
Zurück zum Zitat Ritchie R O (1983) Why ductile fracture mechanics?. J Eng Mat Tech 105:1–7CrossRef Ritchie R O (1983) Why ductile fracture mechanics?. J Eng Mat Tech 105:1–7CrossRef
36.
Zurück zum Zitat Dowling NE, Begley JA Fatigue crack growth during gross plasticity and the J-integral. In: Mechanics of crack growth, ASTM STP 590, Am Soc Test Mat Dowling NE, Begley JA Fatigue crack growth during gross plasticity and the J-integral. In: Mechanics of crack growth, ASTM STP 590, Am Soc Test Mat
37.
Zurück zum Zitat Sutton M A, Orteu J J, Schreier H (2009) Image correlation for shape motion and deformation measurements: basic concepts, theory and applications. Springer, New York Sutton M A, Orteu J J, Schreier H (2009) Image correlation for shape motion and deformation measurements: basic concepts, theory and applications. Springer, New York
38.
Zurück zum Zitat Marin J (1962) Mechanical behavior of engineering materials. Prentice-Hall, New Jersey Marin J (1962) Mechanical behavior of engineering materials. Prentice-Hall, New Jersey
39.
Zurück zum Zitat Juvinall R C, Marshek K M (2000) Fundamentals of machine component design, 3rd edn. Wiley, New York Juvinall R C, Marshek K M (2000) Fundamentals of machine component design, 3rd edn. Wiley, New York
40.
Zurück zum Zitat Budynas R G, Nisbett J K (2011) Shigley’s mechanical engineering design, 9th edn. McGraw-Hill, New York Budynas R G, Nisbett J K (2011) Shigley’s mechanical engineering design, 9th edn. McGraw-Hill, New York
41.
Zurück zum Zitat Pilkey W D, Pilkey D F (2008) Peterson’s stress concentration factors, 3rd edn. Wiley, New Jersey Pilkey W D, Pilkey D F (2008) Peterson’s stress concentration factors, 3rd edn. Wiley, New Jersey
42.
Zurück zum Zitat Gerber H (1874) Bestimmung der Zulassigen Spannungen in Eisen-Constructionen. Dr. C. Wolf and Son, Munich Gerber H (1874) Bestimmung der Zulassigen Spannungen in Eisen-Constructionen. Dr. C. Wolf and Son, Munich
43.
Zurück zum Zitat Heywood R B (1962) Design against fatigue of metals. Reinhold Publishing Corp, New York Heywood R B (1962) Design against fatigue of metals. Reinhold Publishing Corp, New York
44.
Zurück zum Zitat Goodman J (1899) Mechanics applied to engineering. Longmans, Green, and Co, LondonMATH Goodman J (1899) Mechanics applied to engineering. Longmans, Green, and Co, LondonMATH
45.
Zurück zum Zitat Evans K E, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking!. Adv Mater 12(9):617– 628CrossRef Evans K E, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking!. Adv Mater 12(9):617– 628CrossRef
46.
Zurück zum Zitat Clausen A, Wang F, Jensen J S, Sigmund O, Lewis J A (2015) Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv Mater 27(37):5523–5527CrossRef Clausen A, Wang F, Jensen J S, Sigmund O, Lewis J A (2015) Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv Mater 27(37):5523–5527CrossRef
47.
Zurück zum Zitat Beatty M F, Stalnaker D O (1986) The Poisson function of finite elasticity. J Appl Mech 153:807–813MATHCrossRef Beatty M F, Stalnaker D O (1986) The Poisson function of finite elasticity. J Appl Mech 153:807–813MATHCrossRef
48.
Zurück zum Zitat Overvelde J T B, Shan S, Bertoldi K (2012) Compaction through buckling in 2D periodic, soft and porous structures: Effect of pore shape. Adv Mater 24(17):2337–2342CrossRef Overvelde J T B, Shan S, Bertoldi K (2012) Compaction through buckling in 2D periodic, soft and porous structures: Effect of pore shape. Adv Mater 24(17):2337–2342CrossRef
49.
Zurück zum Zitat Baldi A (2013) Comparing two damage models under shear stress. Exp Mech 53:1105–1116CrossRef Baldi A (2013) Comparing two damage models under shear stress. Exp Mech 53:1105–1116CrossRef
50.
Zurück zum Zitat Suquet P (1987) Elements of homogenization theory for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media, Springer Suquet P (1987) Elements of homogenization theory for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media, Springer
51.
Zurück zum Zitat Xia Z, Zhou C, Yong Q, Wang X (2006) On selection of repeated unit cell model and application of unified periodic boundary conditions in micromechanical analysis of composites. Int J Sol Struct 43:266–278MATHCrossRef Xia Z, Zhou C, Yong Q, Wang X (2006) On selection of repeated unit cell model and application of unified periodic boundary conditions in micromechanical analysis of composites. Int J Sol Struct 43:266–278MATHCrossRef
Metadaten
Titel
An Investigation of the Enhanced Fatigue Performance of Low-porosity Auxetic Metamaterials
verfasst von
L. Francesconi
A. Baldi
G. Dominguez
M. Taylor
Publikationsdatum
05.09.2019
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 1/2020
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-019-00539-7

Weitere Artikel der Ausgabe 1/2020

Experimental Mechanics 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.