Skip to main content
Erschienen in: Peer-to-Peer Networking and Applications 5/2019

23.03.2019

An IoT based efficient hybrid recommender system for cardiovascular disease

verfasst von: Fouzia Jabeen, Muazzam Maqsood, Mustansar Ali Ghazanfar, Farhan Aadil, Salabat Khan, Muhammad Fahad Khan, Irfan Mehmood

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A fog-based IoT model can be helpful for patients from remote areas with cardiovascular disease. An expert cardiologist is usually not available in such remote areas. There are some systems available to classify heart disease and provide recommendations but these existing systems only use classification for recommendations. From this line of research, we propose an IoT based efficient community-based recommender system that diagnoses cardiac disease and its type and provides recommendations related to the physical and dietary plan. The first part intent to collect the data from the patient remotely by using the bio sensors. The IoT based environment is used to transmit the data to the server. Afterward, heart disease prediction model is implemented, that can diagnose the cardiovascular disease and classify into eight available cardiovascular classes i.e. Myocardial Infarction (MI stable), Myocardial Infarction (MI unstable), Acute Coronary Syndrome (ACS), Atrial Fibrillation (AF), Hypertension (HTN), Ischemic Heart Disease (IHD), Left Ventricular Hypertrophy (LVH), Chronic Heart Failure/ Left Ventricle Function (CCF/LVF), Supraventricular Tachycardia (SVT). The second part pursues to provide physical and dietary plan recommendation to the cardiac patient according to gender and age groups. A dataset for diseases and corresponding recommendations is collected from a well-renowned hospital with the help of an expert cardiologist. The performance of the system is evaluated in terms of precision, recall and Mean absolute error and achieves 98% accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bhatt, A., S.K. Dubey, and A.K. Bhatt, Analytical Study on Cardiovascular Health Issues Prediction Using Decision Model-Based Predictive Analytic Techniques, in Soft Computing: Theories and Applications. 2018, Springer. p. 289–299 Bhatt, A., S.K. Dubey, and A.K. Bhatt, Analytical Study on Cardiovascular Health Issues Prediction Using Decision Model-Based Predictive Analytic Techniques, in Soft Computing: Theories and Applications. 2018, Springer. p. 289–299
2.
Zurück zum Zitat Malik S et al (2017) Coronary artery calcium score for long-term risk classification in individuals with type 2 diabetes and metabolic syndrome from the multi-ethnic study of atherosclerosis. JAMA Cardiol 2(12):1332–1340CrossRef Malik S et al (2017) Coronary artery calcium score for long-term risk classification in individuals with type 2 diabetes and metabolic syndrome from the multi-ethnic study of atherosclerosis. JAMA Cardiol 2(12):1332–1340CrossRef
3.
Zurück zum Zitat Zheng T et al (2017) A machine learning-based framework to identify type 2 diabetes through electronic health records. Int J Med Inform 97:120–127CrossRef Zheng T et al (2017) A machine learning-based framework to identify type 2 diabetes through electronic health records. Int J Med Inform 97:120–127CrossRef
4.
Zurück zum Zitat Sudhakar K, Manimekalai DM (2014) Study of heart disease prediction using data mining. International Journal of Advanced Research in Computer Science and Software Engineering 4(1) Sudhakar K, Manimekalai DM (2014) Study of heart disease prediction using data mining. International Journal of Advanced Research in Computer Science and Software Engineering 4(1)
5.
Zurück zum Zitat Lloyd-Jones D et al (2010) Heart disease and stroke statistics—2010 update. Circulation 121(7):e46–e215 Lloyd-Jones D et al (2010) Heart disease and stroke statistics—2010 update. Circulation 121(7):e46–e215
6.
Zurück zum Zitat Lan, M., et al. Wanda: An end-to-end remote health monitoring and analytics system for heart failure patients. In Proceedings of the conference on Wireless Health. 2012. ACM Lan, M., et al. Wanda: An end-to-end remote health monitoring and analytics system for heart failure patients. In Proceedings of the conference on Wireless Health. 2012. ACM
7.
Zurück zum Zitat Chen, S., et al. A framework for massive data transmission in a remote real-time health monitoring system. in 2012 18th International Conference on Automation and Computing (ICAC), 2012. IEEE Chen, S., et al. A framework for massive data transmission in a remote real-time health monitoring system. in 2012 18th International Conference on Automation and Computing (ICAC), 2012. IEEE
8.
Zurück zum Zitat Baig MM, Gholamhosseini H (2013) Smart health monitoring systems: an overview of design and modeling. J Med Syst 37(2):9898CrossRef Baig MM, Gholamhosseini H (2013) Smart health monitoring systems: an overview of design and modeling. J Med Syst 37(2):9898CrossRef
9.
Zurück zum Zitat Bellazzi R, Ferrazzi F, Sacchi L (2011) Predictive data mining in clinical medicine: a focus on selected methods and applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(5):416–430 Bellazzi R, Ferrazzi F, Sacchi L (2011) Predictive data mining in clinical medicine: a focus on selected methods and applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(5):416–430
10.
Zurück zum Zitat Koh HC, Tan G (2011) Data mining applications in healthcare. Journal of healthcare information management 19(2):65 Koh HC, Tan G (2011) Data mining applications in healthcare. Journal of healthcare information management 19(2):65
11.
Zurück zum Zitat Ijas, P., et al., Abstract WMP62: Remote Home Monitoring of Risk Factors After Stroke or TIA to Improve Secondary Prevention-A Pilot Study. 2018, Am Heart Assoc Ijas, P., et al., Abstract WMP62: Remote Home Monitoring of Risk Factors After Stroke or TIA to Improve Secondary Prevention-A Pilot Study. 2018, Am Heart Assoc
12.
Zurück zum Zitat Kadi I, Idri A, Fernandez-Aleman J (2017) Knowledge discovery in cardiology: a systematic literature review. Int J Med Inform 97:12–32CrossRef Kadi I, Idri A, Fernandez-Aleman J (2017) Knowledge discovery in cardiology: a systematic literature review. Int J Med Inform 97:12–32CrossRef
13.
Zurück zum Zitat Doukas, C. and I. Maglogiannis. Bringing IoT and cloud computing towards pervasive healthcare. In 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS). 2012. IEEE Doukas, C. and I. Maglogiannis. Bringing IoT and cloud computing towards pervasive healthcare. In 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS). 2012. IEEE
14.
Zurück zum Zitat Mahdavi, S., S. Rahnamayan, and K. Deb, Opposition based learning: a literature review. Swarm and Evolutionary Computation, 2017 Mahdavi, S., S. Rahnamayan, and K. Deb, Opposition based learning: a literature review. Swarm and Evolutionary Computation, 2017
15.
Zurück zum Zitat Hamza, R., et al., Hash based encryption for keyframes of diagnostic hysteroscopy. IEEE Access, 2017 Hamza, R., et al., Hash based encryption for keyframes of diagnostic hysteroscopy. IEEE Access, 2017
16.
Zurück zum Zitat Muhammad K et al (2018) Secure surveillance framework for IoT systems using probabilistic image encryption. IEEE Transactions on Industrial Informatics Muhammad K et al (2018) Secure surveillance framework for IoT systems using probabilistic image encryption. IEEE Transactions on Industrial Informatics
17.
Zurück zum Zitat Allyn J et al (2017) A comparison of a machine learning model with EuroSCORE II in predicting mortality after elective cardiac surgery: a decision curve analysis. PLoS One 12(1):e0169772CrossRef Allyn J et al (2017) A comparison of a machine learning model with EuroSCORE II in predicting mortality after elective cardiac surgery: a decision curve analysis. PLoS One 12(1):e0169772CrossRef
18.
Zurück zum Zitat Le Duff, F., et al. Predicting survival causes after out of hospital cardiac arrest using data mining method. in Medinfo. 2004 Le Duff, F., et al. Predicting survival causes after out of hospital cardiac arrest using data mining method. in Medinfo. 2004
19.
Zurück zum Zitat Huang F, Wang S, Chan C-C Predicting disease by using data mining based on healthcare information system. In 2012 IEEE International Conference on Granular Computing (GrC). 2012. IEEE Huang F, Wang S, Chan C-C Predicting disease by using data mining based on healthcare information system. In 2012 IEEE International Conference on Granular Computing (GrC). 2012. IEEE
20.
Zurück zum Zitat Kim J-K et al (2014) Adaptive mining prediction model for content recommendation to coronary heart disease patients. Clust Comput 17(3):881–891CrossRef Kim J-K et al (2014) Adaptive mining prediction model for content recommendation to coronary heart disease patients. Clust Comput 17(3):881–891CrossRef
21.
Zurück zum Zitat Saiyed, K.A. and V.K. Verma, Prediction for Heart Disease Problem Based on Most Suitable Recommendation. Int J, 2016. 1(7) Saiyed, K.A. and V.K. Verma, Prediction for Heart Disease Problem Based on Most Suitable Recommendation. Int J, 2016. 1(7)
22.
Zurück zum Zitat Wilson PW et al (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97(18):1837–1847CrossRef Wilson PW et al (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97(18):1837–1847CrossRef
23.
Zurück zum Zitat Thottakkara P et al (2016) Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. PLoS One 11(5):e0155705CrossRef Thottakkara P et al (2016) Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. PLoS One 11(5):e0155705CrossRef
24.
Zurück zum Zitat Weng SF et al (2017) Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One 12(4):e0174944CrossRef Weng SF et al (2017) Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One 12(4):e0174944CrossRef
25.
Zurück zum Zitat Gul M, Anwar SM, Majid M Electrocardiogram signal classification to detect arrythmia with improved features. In 2017 IEEE International Conference on Imaging Systems and Techniques (IST). 2017. IEEE Gul M, Anwar SM, Majid M Electrocardiogram signal classification to detect arrythmia with improved features. In 2017 IEEE International Conference on Imaging Systems and Techniques (IST). 2017. IEEE
26.
Zurück zum Zitat Mustaqeem A et al Wrapper method for feature selection to classify cardiac arrhythmia. In Engineering in 2017 39th Annual International Conference of the IEEE Medicine and Biology Society (EMBC). 2017. IEEE Mustaqeem A et al Wrapper method for feature selection to classify cardiac arrhythmia. In Engineering in 2017 39th Annual International Conference of the IEEE Medicine and Biology Society (EMBC). 2017. IEEE
27.
Zurück zum Zitat Kausar, N., et al., Systematic analysis of applied data mining based optimization algorithms in clinical attribute extraction and classification for diagnosis of cardiac patients, in Applications of intelligent optimization in biology and medicine. 2016, Springer. p. 217–231 Kausar, N., et al., Systematic analysis of applied data mining based optimization algorithms in clinical attribute extraction and classification for diagnosis of cardiac patients, in Applications of intelligent optimization in biology and medicine. 2016, Springer. p. 217–231
28.
Zurück zum Zitat Zubair M, Kim J, Yoon C An automated ECG beat classification system using convolutional neural networks. In 2016 6th International Conference on IT Convergence and Security (ICITCS). 2016. IEEE Zubair M, Kim J, Yoon C An automated ECG beat classification system using convolutional neural networks. In 2016 6th International Conference on IT Convergence and Security (ICITCS). 2016. IEEE
29.
Zurück zum Zitat Kiranyaz S, Ince T, Gabbouj M (2016) Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng 63(3):664–675CrossRef Kiranyaz S, Ince T, Gabbouj M (2016) Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng 63(3):664–675CrossRef
30.
Zurück zum Zitat Liaw A, Wiener M (2002) Classification and regression by randomForest. R news 2(3):18–22 Liaw A, Wiener M (2002) Classification and regression by randomForest. R news 2(3):18–22
31.
Zurück zum Zitat Chaurasia, V., Early prediction of heart diseases using data mining techniques. 2017 Chaurasia, V., Early prediction of heart diseases using data mining techniques. 2017
32.
Zurück zum Zitat Farhadian M et al (2014) Supervised wavelet method to predict patient survival from gene expression data. Sci World J 2014 Farhadian M et al (2014) Supervised wavelet method to predict patient survival from gene expression data. Sci World J 2014
33.
Zurück zum Zitat Hsieh N-C et al (2012) Intelligent postoperative morbidity prediction of heart disease using artificial intelligence techniques. J Med Syst 36(3):1809–1820CrossRef Hsieh N-C et al (2012) Intelligent postoperative morbidity prediction of heart disease using artificial intelligence techniques. J Med Syst 36(3):1809–1820CrossRef
34.
Zurück zum Zitat James PA et al (2014) 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth joint National Committee (JNC 8). Jama 311(5):507–520CrossRef James PA et al (2014) 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth joint National Committee (JNC 8). Jama 311(5):507–520CrossRef
35.
Zurück zum Zitat Lloyd-Jones DM et al (2006) Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 113(6):791–798CrossRef Lloyd-Jones DM et al (2006) Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 113(6):791–798CrossRef
36.
Zurück zum Zitat Jung H, Chung K (2016) Knowledge-based dietary nutrition recommendation for obese management. Inf Technol Manag 17(1):29–42CrossRef Jung H, Chung K (2016) Knowledge-based dietary nutrition recommendation for obese management. Inf Technol Manag 17(1):29–42CrossRef
37.
Zurück zum Zitat Dangare CS, Apte SS (2012) Improved study of heart disease prediction system using data mining classification techniques. International Journal of Computer Applications 47(10):44–48CrossRef Dangare CS, Apte SS (2012) Improved study of heart disease prediction system using data mining classification techniques. International Journal of Computer Applications 47(10):44–48CrossRef
38.
Zurück zum Zitat Zemla AM Assessment of Cardiovascular Disease Risk Knowledge and Dietary Habits among Adults. 2017. D'Youville College Zemla AM Assessment of Cardiovascular Disease Risk Knowledge and Dietary Habits among Adults. 2017. D'Youville College
39.
Zurück zum Zitat Rahmani AM et al (2018) Exploiting smart e-health gateways at the edge of healthcare internet-of-things: a fog computing approach. Futur Gener Comput Syst 78:641–658CrossRef Rahmani AM et al (2018) Exploiting smart e-health gateways at the edge of healthcare internet-of-things: a fog computing approach. Futur Gener Comput Syst 78:641–658CrossRef
40.
Zurück zum Zitat Fortino G et al (2014) BodyCloud: a SaaS approach for community body sensor networks. Futur Gener Comput Syst 35:62–79CrossRef Fortino G et al (2014) BodyCloud: a SaaS approach for community body sensor networks. Futur Gener Comput Syst 35:62–79CrossRef
41.
Zurück zum Zitat Kuo, A.M.-H., Opportunities and challenges of cloud computing to improve health care services. J Med Internet Res, 2011. 13(3) Kuo, A.M.-H., Opportunities and challenges of cloud computing to improve health care services. J Med Internet Res, 2011. 13(3)
42.
Zurück zum Zitat Venkataraman, S. and R. Selvaraj, Optimal and Novel Hybrid Feature Selection Framework for Effective Data Classification, in Advances in Systems, Control and Automation. 2018, Springer. p. 499–514 Venkataraman, S. and R. Selvaraj, Optimal and Novel Hybrid Feature Selection Framework for Effective Data Classification, in Advances in Systems, Control and Automation. 2018, Springer. p. 499–514
43.
Zurück zum Zitat Rathore S et al (2017) A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages. NeuroImage 155:530–548CrossRef Rathore S et al (2017) A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages. NeuroImage 155:530–548CrossRef
44.
Zurück zum Zitat Tang, J., S. Alelyani, and H. Liu, Feature selection for classification: A review. Data Classification: Algorithms and Applications, 2014: p. 37 Tang, J., S. Alelyani, and H. Liu, Feature selection for classification: A review. Data Classification: Algorithms and Applications, 2014: p. 37
45.
Zurück zum Zitat Maqsood, M., H. Habib, and T. Nawaz, Selection of discriminative features for arabic phoneme's mispronunciation detection. Pakistan Journal of Science, 2015. 67(4) Maqsood, M., H. Habib, and T. Nawaz, Selection of discriminative features for arabic phoneme's mispronunciation detection. Pakistan Journal of Science, 2015. 67(4)
46.
Zurück zum Zitat Joachims T Text categorization with support vector machines: Learning with many relevant features. In European conference on machine learning. 1998. Springer Joachims T Text categorization with support vector machines: Learning with many relevant features. In European conference on machine learning. 1998. Springer
47.
Zurück zum Zitat Witten IH (1999) Et al. Weka, Practical machine learning tools and techniques with Java implementations Witten IH (1999) Et al. Weka, Practical machine learning tools and techniques with Java implementations
48.
Zurück zum Zitat Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167CrossRef Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167CrossRef
49.
Zurück zum Zitat Huang X et al (2017) Indefinite kernels in least squares support vector machines and principal component analysis. Appl Comput Harmon Anal 43(1):162–172MathSciNetCrossRefMATH Huang X et al (2017) Indefinite kernels in least squares support vector machines and principal component analysis. Appl Comput Harmon Anal 43(1):162–172MathSciNetCrossRefMATH
50.
Zurück zum Zitat Di Nunzio, G.M., Interactive text categorisation: The geometry of likelihood spaces, in Information Filtering and Retrieval. 2017, Springer. p. 13–34 Di Nunzio, G.M., Interactive text categorisation: The geometry of likelihood spaces, in Information Filtering and Retrieval. 2017, Springer. p. 13–34
51.
Zurück zum Zitat Alyari F, Jafari Navimipour N (2018) Recommender systems: a systematic review of the state of the art literature and suggestions for future research. Kybernetes 47(5):985–1017CrossRef Alyari F, Jafari Navimipour N (2018) Recommender systems: a systematic review of the state of the art literature and suggestions for future research. Kybernetes 47(5):985–1017CrossRef
52.
Zurück zum Zitat Lin C-Y, Wang L-C, Tsai K-H (2018) Hybrid real-time matrix factorization for implicit feedback recommendation systems. IEEE Access 6:21369–21380CrossRef Lin C-Y, Wang L-C, Tsai K-H (2018) Hybrid real-time matrix factorization for implicit feedback recommendation systems. IEEE Access 6:21369–21380CrossRef
53.
Zurück zum Zitat Park Y-J, Tuzhilin A The long tail of recommender systems and how to leverage it. In Proceedings of the 2008 ACM conference on Recommender systems. 2008. ACM Park Y-J, Tuzhilin A The long tail of recommender systems and how to leverage it. In Proceedings of the 2008 ACM conference on Recommender systems. 2008. ACM
54.
Zurück zum Zitat Sarwar B et al Application of dimensionality reduction in recommender system-a case study. 2000. Minnesota Univ Minneapolis Dept of Computer Science Sarwar B et al Application of dimensionality reduction in recommender system-a case study. 2000. Minnesota Univ Minneapolis Dept of Computer Science
55.
Zurück zum Zitat Satsiou A, Vrochidis S, Kompatsiaris I A Hybrid Recommendation System Based on Density-Based Clustering. In Internet Science: INSCI 2017 International Workshops, IFIN, DATA ECONOMY, DSI, and CONVERSATIONS, Thessaloniki, Greece, November 22, 2017, Revised Selected Papers. 2018. Springer Satsiou A, Vrochidis S, Kompatsiaris I A Hybrid Recommendation System Based on Density-Based Clustering. In Internet Science: INSCI 2017 International Workshops, IFIN, DATA ECONOMY, DSI, and CONVERSATIONS, Thessaloniki, Greece, November 22, 2017, Revised Selected Papers. 2018. Springer
56.
Zurück zum Zitat Xu Y, Yang Q, Chu D (2018) Exploring timeliness for accurate recommendation in location-based social networks. Mathematical Foundations of Computing 1(1):11–48CrossRef Xu Y, Yang Q, Chu D (2018) Exploring timeliness for accurate recommendation in location-based social networks. Mathematical Foundations of Computing 1(1):11–48CrossRef
57.
Zurück zum Zitat Ateeq T et al (2018) Ensemble-classifiers-assisted detection of cerebral microbleeds in brain MRI. Computers & Electrical Engineering Ateeq T et al (2018) Ensemble-classifiers-assisted detection of cerebral microbleeds in brain MRI. Computers & Electrical Engineering
58.
Zurück zum Zitat Kalsoom, A., et al., A dimensionality reduction-based efficient software fault prediction using Fisher linear discriminant analysis (FLDA). J Supercomput, 2018: p. 1–35 Kalsoom, A., et al., A dimensionality reduction-based efficient software fault prediction using Fisher linear discriminant analysis (FLDA). J Supercomput, 2018: p. 1–35
59.
Zurück zum Zitat Nazir, F., et al., Social media signal detection using tweets volume, hashtag, and sentiment analysis. Multimed Tools Appl, 2018: p. 1–34 Nazir, F., et al., Social media signal detection using tweets volume, hashtag, and sentiment analysis. Multimed Tools Appl, 2018: p. 1–34
60.
Zurück zum Zitat Breese JS, Heckerman D, Kadie C Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence. 1998. Morgan Kaufmann Publishers Inc Breese JS, Heckerman D, Kadie C Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence. 1998. Morgan Kaufmann Publishers Inc
61.
Zurück zum Zitat Ghazanfar, M. and A. Prugel-Bennett, An improved switching hybrid recommender system using naive bayes classifier and collaborative filtering. 2010 Ghazanfar, M. and A. Prugel-Bennett, An improved switching hybrid recommender system using naive bayes classifier and collaborative filtering. 2010
62.
Zurück zum Zitat Ghazanfar MA, Prugel-Bennett A A scalable, accurate hybrid recommender system. In Third International Conference on Knowledge Discovery and Data Mining, 2010. WKDD'10. 2010. IEEE Ghazanfar MA, Prugel-Bennett A A scalable, accurate hybrid recommender system. In Third International Conference on Knowledge Discovery and Data Mining, 2010. WKDD'10. 2010. IEEE
63.
Zurück zum Zitat Sarwar B et al Analysis of recommendation algorithms for e-commerce. In Proceedings of the 2nd ACM conference on Electronic commerce. 2000. ACM Sarwar B et al Analysis of recommendation algorithms for e-commerce. In Proceedings of the 2nd ACM conference on Electronic commerce. 2000. ACM
64.
Zurück zum Zitat Xue G-R et al Scalable collaborative filtering using cluster-based smoothing. In Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval. 2005. ACM Xue G-R et al Scalable collaborative filtering using cluster-based smoothing. In Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval. 2005. ACM
65.
Zurück zum Zitat Lafta R et al An intelligent recommender system based on predictive analysis in telehealthcare environment. In Web Intelligence. 2016. IOS Press Lafta R et al An intelligent recommender system based on predictive analysis in telehealthcare environment. In Web Intelligence. 2016. IOS Press
66.
Zurück zum Zitat Baig MM, Hosseini HG, Lindén M Machine learning-based clinical decision support system for early diagnosis from real-time physiological data. In Region 10 Conference (TENCON), 2016 IEEE. 2016. IEEE Baig MM, Hosseini HG, Lindén M Machine learning-based clinical decision support system for early diagnosis from real-time physiological data. In Region 10 Conference (TENCON), 2016 IEEE. 2016. IEEE
Metadaten
Titel
An IoT based efficient hybrid recommender system for cardiovascular disease
verfasst von
Fouzia Jabeen
Muazzam Maqsood
Mustansar Ali Ghazanfar
Farhan Aadil
Salabat Khan
Muhammad Fahad Khan
Irfan Mehmood
Publikationsdatum
23.03.2019
Verlag
Springer US
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 5/2019
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-019-00733-3

Weitere Artikel der Ausgabe 5/2019

Peer-to-Peer Networking and Applications 5/2019 Zur Ausgabe