Skip to main content
Erschienen in: Wireless Personal Communications 1/2018

11.04.2018

An Optimal Trust Aware Cluster Based Routing Protocol Using Fuzzy Based Trust Inference Model and Improved Evolutionary Particle Swarm Optimization in WBANs

verfasst von: R. A. Isabel, E. Baburaj

Erschienen in: Wireless Personal Communications | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The wireless body sensor network (WBSN) an extensive of WSN is in charge for the detection of patient’s health concerned data. This monitored health data are essential to be routed to the sink (base station) in an effective way by approaching the routing technique. Routing of tremendous sensed data to the base station minimizes the life time of the network due to heavy traffic occurrence. The major concern of this work is to increase the lifespan of the network which is considered as a serious problem in the wireless network functionalities. In order to recover this issue, we propose an optimal trust aware cluster based routing technique in WBSN. The human body enforced for the detection of health status is assembled with sensor nodes. In this paper, three novel schemes namely, improved evolutionary particle swarm optimization (IEPSO), fuzzy based trust inference model, and self-adaptive greedy buffer allocation and scheduling algorithm (SGBAS) are proposed for the secured transmission of data. The sensor nodes are gathered to form a cluster and from the cluster, it is necessary to select the cluster head (CH) for the effective transmission of data to nearby nodes without accumulation. The CH is chosen by considering IEPSO algorithm. For securable routing, we exhibit fuzzy based trust inference model to select the trusted path. Finally, to reduce traffic occurrence in the network, we introduce SGBAS algorithm. Experimental results demonstrate that our proposed method attains better results when compared with conventional clustering protocols and in terms of some distinctive QoS determinant parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kulkarni, R. V., et al. (2011). Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics, 41(2), 262–267.MathSciNetCrossRef Kulkarni, R. V., et al. (2011). Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics, 41(2), 262–267.MathSciNetCrossRef
2.
Zurück zum Zitat Bradai, N., Fourati, L. C., & Kamoun, L. (2015). WBAN data scheduling and aggregation under WBAN/WLAN healthcare network. Ad Hoc Networks, 25, 251–262.CrossRef Bradai, N., Fourati, L. C., & Kamoun, L. (2015). WBAN data scheduling and aggregation under WBAN/WLAN healthcare network. Ad Hoc Networks, 25, 251–262.CrossRef
3.
Zurück zum Zitat Al-Janabi, S., Al-Shourbaji, I., Shojafar, M., & Shamshirband, S. (2017). Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egyptian Informatics Journal, 18(2), 113–122.CrossRef Al-Janabi, S., Al-Shourbaji, I., Shojafar, M., & Shamshirband, S. (2017). Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egyptian Informatics Journal, 18(2), 113–122.CrossRef
4.
Zurück zum Zitat Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless micro sensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (Vol. 2). Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless micro sensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (Vol. 2).
5.
Zurück zum Zitat He, Y., Zhu, W., & Guan, L. (2011). Optimal resource allocation for pervasive health monitoring systems with body sensor networks. IEEE Transactions on Mobile Computing, 10(11), 1558–1575.CrossRef He, Y., Zhu, W., & Guan, L. (2011). Optimal resource allocation for pervasive health monitoring systems with body sensor networks. IEEE Transactions on Mobile Computing, 10(11), 1558–1575.CrossRef
6.
Zurück zum Zitat Thotahewa, K., Khan, J., & Yuce, M. (2014). Power efficient ultra wide band based wireless body area networks with narrowband feedback path. IEEE Transactions on Mobile Computing, 13(8), 1829–1842.CrossRef Thotahewa, K., Khan, J., & Yuce, M. (2014). Power efficient ultra wide band based wireless body area networks with narrowband feedback path. IEEE Transactions on Mobile Computing, 13(8), 1829–1842.CrossRef
7.
Zurück zum Zitat Sharma, S., & Jena, S. (2015). Cluster based multipath routing protocol for wireless sensor networks. ACM SIGCOMM Computer Communication Review, 45(2), 14–20.CrossRef Sharma, S., & Jena, S. (2015). Cluster based multipath routing protocol for wireless sensor networks. ACM SIGCOMM Computer Communication Review, 45(2), 14–20.CrossRef
8.
Zurück zum Zitat Sundararaj, V. (2016). An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm. International Journal of Intelligent Engineering System, 9(3), 117–126.CrossRef Sundararaj, V. (2016). An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm. International Journal of Intelligent Engineering System, 9(3), 117–126.CrossRef
9.
Zurück zum Zitat Arboleda, L. M., & Nasser, N. (2006). Comparison of clustering algorithms and protocols for wireless sensor networks. In IEEE conference on electrical and computer engineering (pp. 1787–92). Arboleda, L. M., & Nasser, N. (2006). Comparison of clustering algorithms and protocols for wireless sensor networks. In IEEE conference on electrical and computer engineering (pp. 1787–92).
10.
Zurück zum Zitat Tyagi, S., Gupta, S., Tanwar, S., & Kumar, N. (2013). Ehe-leach: Enhanced heterogeneous leach protocol for life time enhancement of wireless SNs. In 2013 international conference on advances in computing, communications and informatics (ICACCI) (pp. 1485–1490). Tyagi, S., Gupta, S., Tanwar, S., & Kumar, N. (2013). Ehe-leach: Enhanced heterogeneous leach protocol for life time enhancement of wireless SNs. In 2013 international conference on advances in computing, communications and informatics (ICACCI) (pp. 1485–1490).
11.
Zurück zum Zitat Kumar, D. (2014). Performance analysis of energy efficient clustering protocols for maximizing lifetime of wireless sensor networks. IET Wireless Sensor Systems, 4, 9–16. Kumar, D. (2014). Performance analysis of energy efficient clustering protocols for maximizing lifetime of wireless sensor networks. IET Wireless Sensor Systems, 4, 9–16.
12.
Zurück zum Zitat Bader, A., Abed-Meraim, K., & Alouini, M. (2012). An efficient multi-carrier position-based packet forwarding protocol for wireless sensor networks. IEEE Transactions on Wireless Communications, 11(1), 305–315.CrossRef Bader, A., Abed-Meraim, K., & Alouini, M. (2012). An efficient multi-carrier position-based packet forwarding protocol for wireless sensor networks. IEEE Transactions on Wireless Communications, 11(1), 305–315.CrossRef
13.
Zurück zum Zitat Zhang, Y., Huang, D., Ji, M., & Xie, F. (2013). The evolution game analysis of clustering for asymmetrical multi-factors in WSNs. Computers & Electrical Engineering, 39(6), 1746–1757.CrossRef Zhang, Y., Huang, D., Ji, M., & Xie, F. (2013). The evolution game analysis of clustering for asymmetrical multi-factors in WSNs. Computers & Electrical Engineering, 39(6), 1746–1757.CrossRef
14.
Zurück zum Zitat Jin, R., Gao, T., Song, J., Zou, J., & Wang, L. (2013). Passive cluster-based multipath routing protocol for wireless sensor networks. Wireless Networks, 19(8), 1851–1866.CrossRef Jin, R., Gao, T., Song, J., Zou, J., & Wang, L. (2013). Passive cluster-based multipath routing protocol for wireless sensor networks. Wireless Networks, 19(8), 1851–1866.CrossRef
15.
Zurück zum Zitat Du, T., Qu, S., Liu, F., & Wang, Q. (2015). An energy efficiency semi-static routing algorithm for WSNs based on HAC clustering method. Information Fusion, 21, 18–29.CrossRef Du, T., Qu, S., Liu, F., & Wang, Q. (2015). An energy efficiency semi-static routing algorithm for WSNs based on HAC clustering method. Information Fusion, 21, 18–29.CrossRef
16.
Zurück zum Zitat Mahajan, S., Malhotra, J., & Sharma, S. (2014). An energy balanced QoS based cluster head selection strategy for WSN. Egyptian Informatics Journal, 15(3), 189–199.CrossRef Mahajan, S., Malhotra, J., & Sharma, S. (2014). An energy balanced QoS based cluster head selection strategy for WSN. Egyptian Informatics Journal, 15(3), 189–199.CrossRef
17.
Zurück zum Zitat Wu, D., Bao, L., & Liu, C. H. (2013). Scalable channel allocation and access scheduling for wireless internet-of-things. IEEE Sensors Journal, 13(10), 3596–3604.CrossRef Wu, D., Bao, L., & Liu, C. H. (2013). Scalable channel allocation and access scheduling for wireless internet-of-things. IEEE Sensors Journal, 13(10), 3596–3604.CrossRef
18.
Zurück zum Zitat Wu, D., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. Journal of Parallel and Distributed Computing, 73(8), 1049–1065.CrossRefMATH Wu, D., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. Journal of Parallel and Distributed Computing, 73(8), 1049–1065.CrossRefMATH
19.
Zurück zum Zitat Rezaee, A. A., & Pasandideh, F. (2018). A fuzzy congestion control protocol based on active queue management in wireless sensor networks with medical applications. Wireless Personal Communications, 98(1), 815–842.CrossRef Rezaee, A. A., & Pasandideh, F. (2018). A fuzzy congestion control protocol based on active queue management in wireless sensor networks with medical applications. Wireless Personal Communications, 98(1), 815–842.CrossRef
20.
Zurück zum Zitat Jiang, C., Shi, W., Xiang, M., & Tang, X. (2010). Energy-balanced unequal clustering protocol for wireless sensor networks. The Journal of China Universities of Posts and Telecommunications, 17(4), 94–99.CrossRef Jiang, C., Shi, W., Xiang, M., & Tang, X. (2010). Energy-balanced unequal clustering protocol for wireless sensor networks. The Journal of China Universities of Posts and Telecommunications, 17(4), 94–99.CrossRef
21.
Zurück zum Zitat Latiff, N., Tsimenidis, C., & Sharif, B. (2007). Energy-aware clustering for wireless sensor networks using particle swarm optimization. In IEEE 18th international conference on personal, indoor and mobile radio communications (PIMR C’07) (pp. 1–5). Latiff, N., Tsimenidis, C., & Sharif, B. (2007). Energy-aware clustering for wireless sensor networks using particle swarm optimization. In IEEE 18th international conference on personal, indoor and mobile radio communications (PIMR C’07) (pp. 1–5).
22.
Zurück zum Zitat Ren, J., Zhang, Y., Zhang, K., & Shen, X. (2016). Adaptive and channel-aware detection of selective forwarding attacks in wireless sensor networks. IEEE Transactions on Wireless Communications, 15(5), 3718–3731.CrossRef Ren, J., Zhang, Y., Zhang, K., & Shen, X. (2016). Adaptive and channel-aware detection of selective forwarding attacks in wireless sensor networks. IEEE Transactions on Wireless Communications, 15(5), 3718–3731.CrossRef
23.
Zurück zum Zitat Abdul Latiff, N., Tsimenidis, C., & Sharif, B. (2007). Performance comparison of optimization algorithms for clustering in wireless sensor networks. In IEEE international conference on mobile adhoc and sensor systems (pp. 1–4). Abdul Latiff, N., Tsimenidis, C., & Sharif, B. (2007). Performance comparison of optimization algorithms for clustering in wireless sensor networks. In IEEE international conference on mobile adhoc and sensor systems (pp. 1–4).
24.
Zurück zum Zitat Rahmanian, A., Omranpour, H., Akbari, M., & Raahemifar, K. (2011). A novel genetic algorithm in leach-c routing protocol for sensor networks. In 24th Canadian conference on electrical and computer engineering (CCECE) (pp. 001096–001100). Rahmanian, A., Omranpour, H., Akbari, M., & Raahemifar, K. (2011). A novel genetic algorithm in leach-c routing protocol for sensor networks. In 24th Canadian conference on electrical and computer engineering (CCECE) (pp. 001096–001100).
25.
Zurück zum Zitat Hacioglu, G., Kand, V., & Sesli, E. (2016). Multi objective clustering for wireless sensor networks. Expert Systems with Applications, 59, 86–100.CrossRef Hacioglu, G., Kand, V., & Sesli, E. (2016). Multi objective clustering for wireless sensor networks. Expert Systems with Applications, 59, 86–100.CrossRef
26.
Zurück zum Zitat Khalil, E. A., & Attea, B. A. (2011). Energy-aware evolutionary routing protocol for dynamic clustering of wireless sensor networks. Swarm and Evolutionary Computation, 1(4), 195–203.CrossRef Khalil, E. A., & Attea, B. A. (2011). Energy-aware evolutionary routing protocol for dynamic clustering of wireless sensor networks. Swarm and Evolutionary Computation, 1(4), 195–203.CrossRef
27.
Zurück zum Zitat Djenouri, D., & Balasingham, I. (2009). New QoS and geographical routing in wireless biomedical sensor networks. In 6th international conference on broadband communications, networks, and systems (pp. 1–8). Djenouri, D., & Balasingham, I. (2009). New QoS and geographical routing in wireless biomedical sensor networks. In 6th international conference on broadband communications, networks, and systems (pp. 1–8).
28.
Zurück zum Zitat Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless micro sensor networks. IEEE Transactions on Wireless Communications, 1, 660–670.CrossRef Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless micro sensor networks. IEEE Transactions on Wireless Communications, 1, 660–670.CrossRef
Metadaten
Titel
An Optimal Trust Aware Cluster Based Routing Protocol Using Fuzzy Based Trust Inference Model and Improved Evolutionary Particle Swarm Optimization in WBANs
verfasst von
R. A. Isabel
E. Baburaj
Publikationsdatum
11.04.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5683-8

Weitere Artikel der Ausgabe 1/2018

Wireless Personal Communications 1/2018 Zur Ausgabe

Neuer Inhalt