Skip to main content
Erschienen in: Microsystem Technologies 10/2016

25.05.2016 | Review Paper

An overview of magnetic micro-robot systems for biomedical applications

verfasst von: Liang Zheng, Li-guo Chen, Hai-bo Huang, Xiang-peng Li, Lei-lei Zhang

Erschienen in: Microsystem Technologies | Ausgabe 10/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Untethered and wirelessly-controlled micro-robots have been catching substantial attention for a long time due to their great potentials in biomedical areas. Their small sizes and property of wireless magnetic actuation and control make them fit in tiny and closed environments both in vitro and in vivo such as lab-on-a-chip and human blood vessels for micromanipulations, minimum/non-invasive theoretical and diagnostic applications, respectively. In recent years, micro-robots driven by magnetic fields become a hotspot due to their good controllability and motion performance they have shown in both wet and dry environments. And they hardly bring harm under magnetic actuation and control, which qualify them especially for biomedical applications. This paper reviews the state of the art of hjbvmagnetic-micro-robot systems, including the related knowledge and theories, design works of magnetic micro-robots and magnetic navigation systems. For a straightforward understanding, several types of magnetic micro-robot systems are presented. And some applications of magnetic micro-robot systems are introduced at the end to show their great potentials. However, for further developments, many obstacles still need to be solved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the paper, if without specialized indication, the bold font means three dimensional column vector.
 
Literatur
Zurück zum Zitat Abbott JJ, Nagy Z, Beyeler F, Nelson BJ (2007a) Robotics in the small, part i: microbotics. Robot Autom Mag IEEE 14(2):92–103CrossRef Abbott JJ, Nagy Z, Beyeler F, Nelson BJ (2007a) Robotics in the small, part i: microbotics. Robot Autom Mag IEEE 14(2):92–103CrossRef
Zurück zum Zitat Abbott JJ, Ergeneman O, Kummer MP, Hirt AM, Nelson BJ (2007b) Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. Robot IEEE Trans 23(6):1247–1252CrossRef Abbott JJ, Ergeneman O, Kummer MP, Hirt AM, Nelson BJ (2007b) Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. Robot IEEE Trans 23(6):1247–1252CrossRef
Zurück zum Zitat Abbott JJ, Peyer KE, Dong LX, Nelson BJ (2009) How should microrobots swim? Int J Robot Res 28(1112):1434–1447CrossRef Abbott JJ, Peyer KE, Dong LX, Nelson BJ (2009) How should microrobots swim? Int J Robot Res 28(1112):1434–1447CrossRef
Zurück zum Zitat Bouchebout S, Bolopion A, Abrahamians JO, Régnier S (2012) An overview of multiple DoF magnetic actuated micro-robots. J Micro-Nano Mechatron 7(4):97–113CrossRef Bouchebout S, Bolopion A, Abrahamians JO, Régnier S (2012) An overview of multiple DoF magnetic actuated micro-robots. J Micro-Nano Mechatron 7(4):97–113CrossRef
Zurück zum Zitat Brewer RD, Loewke KE, Duval EF, Salisbury JK (2008) Force control of a permanent magnet for minimally-invasive procedures. 2008 2nd IEEE RAS&EMBS international conference on biomedical robotics and biomechatronics, pp 580–586 Brewer RD, Loewke KE, Duval EF, Salisbury JK (2008) Force control of a permanent magnet for minimally-invasive procedures. 2008 2nd IEEE RAS&EMBS international conference on biomedical robotics and biomechatronics, pp 580–586
Zurück zum Zitat Brock O, Trinkle J, Ramos F (2009) Dynamic modeling of stick slip motion in an untethered magnetic micro-robot. Robotics: science and systems IV. MIT Press, Cambridge Brock O, Trinkle J, Ramos F (2009) Dynamic modeling of stick slip motion in an untethered magnetic micro-robot. Robotics: science and systems IV. MIT Press, Cambridge
Zurück zum Zitat Carlsen RW, Edwards MR, Zhuang J, Pacoret C, Sitti M (2014) Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip 14(19):3850–3859CrossRef Carlsen RW, Edwards MR, Zhuang J, Pacoret C, Sitti M (2014) Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip 14(19):3850–3859CrossRef
Zurück zum Zitat Choi H, Choi J, Jang G, Park JO, Park S (2009) Two-dimensional actuation of a microrobot with a stationary two-pair coil system. Smart Mater Struct 18(5):55007–55009CrossRef Choi H, Choi J, Jang G, Park JO, Park S (2009) Two-dimensional actuation of a microrobot with a stationary two-pair coil system. Smart Mater Struct 18(5):55007–55009CrossRef
Zurück zum Zitat Choi J, Choi H, Jeong S, Park BJ, Ko SY, Park JO, Park S (2013) Position-based compensation of electromagnetic fields interference for electromagnetic locomotive microrobot. Proc Inst Mech Eng Part C: J Mech Eng Sci 227(9):1915–1926CrossRef Choi J, Choi H, Jeong S, Park BJ, Ko SY, Park JO, Park S (2013) Position-based compensation of electromagnetic fields interference for electromagnetic locomotive microrobot. Proc Inst Mech Eng Part C: J Mech Eng Sci 227(9):1915–1926CrossRef
Zurück zum Zitat Debora S, Mark AG, Gibbs JG, Cornelia M, Morozov KI, Leshansky AM et al (2014) Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8(9):8794–8801CrossRef Debora S, Mark AG, Gibbs JG, Cornelia M, Morozov KI, Leshansky AM et al (2014) Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8(9):8794–8801CrossRef
Zurück zum Zitat Diller E, Ye Z, Sitti M (2011) Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects. Intelligent robots and systems (IROS), 2011 IEEE/RSJ international conference on vol 32, pp 1291–1296. IEEE Diller E, Ye Z, Sitti M (2011) Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects. Intelligent robots and systems (IROS), 2011 IEEE/RSJ international conference on vol 32, pp 1291–1296. IEEE
Zurück zum Zitat Diller E, Floyd S, Pawashe C, Sitti M (2011) Control of multiple heterogeneous magnetic micro-robots on non-specialized surfaces. Robotics and automation (ICRA), 2011 IEEE international conference on vol 124, pp 115–120. IEEE Diller E, Floyd S, Pawashe C, Sitti M (2011) Control of multiple heterogeneous magnetic micro-robots on non-specialized surfaces. Robotics and automation (ICRA), 2011 IEEE international conference on vol 124, pp 115–120. IEEE
Zurück zum Zitat Diller E, Miyashita S, Sitti M (2012) Remotely addressable magnetic composite micropumps. RSC Adv 2(9):3850–3856CrossRef Diller E, Miyashita S, Sitti M (2012) Remotely addressable magnetic composite micropumps. RSC Adv 2(9):3850–3856CrossRef
Zurück zum Zitat Dogangil G, Ergeneman O, Abbott JJ, Pane S, Hall H, Muntwyler S et al (2008) Toward targeted retinal drug delivery with wireless magnetic microrobots. IEEE Dogangil G, Ergeneman O, Abbott JJ, Pane S, Hall H, Muntwyler S et al (2008) Toward targeted retinal drug delivery with wireless magnetic microrobots. IEEE
Zurück zum Zitat Donald BR, Levey CG, Mcgray CD, Paprotny I, Rus D (2006) An untethered, electrostatic, globally controllable mems micro-robot. Microelectromech Syst J 15(1):1–15CrossRef Donald BR, Levey CG, Mcgray CD, Paprotny I, Rus D (2006) An untethered, electrostatic, globally controllable mems micro-robot. Microelectromech Syst J 15(1):1–15CrossRef
Zurück zum Zitat Ergeneman O, Dogangil G, Abbott JJ, Nazeeruddin MK, Nelson BJ (2007) A magnetically controlled wireless intraocular oxygen sensor: concept, prototype, and in vitro experiments. Conference proceedings: Annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society. Conference vol 2007, pp 4189–4193 Ergeneman O, Dogangil G, Abbott JJ, Nazeeruddin MK, Nelson BJ (2007) A magnetically controlled wireless intraocular oxygen sensor: concept, prototype, and in vitro experiments. Conference proceedings: Annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society. Conference vol 2007, pp 4189–4193
Zurück zum Zitat Ergeneman O, Dogangil G, Kummer MP, Abbott JJ, Nazeeruddin MK, Nelson BJ (2008) A magnetically controlled wireless optical oxygen sensor for intraocular measurements. Sens J IEEE 8(1):29–37CrossRef Ergeneman O, Dogangil G, Kummer MP, Abbott JJ, Nazeeruddin MK, Nelson BJ (2008) A magnetically controlled wireless optical oxygen sensor for intraocular measurements. Sens J IEEE 8(1):29–37CrossRef
Zurück zum Zitat Eric D, Metin S (2014) Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv Funct Mater 24(28):4397–4404CrossRef Eric D, Metin S (2014) Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv Funct Mater 24(28):4397–4404CrossRef
Zurück zum Zitat Floyd S, Pawashe C, Sitti M (2008) An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. Proceedings—IEEE international conference on robotics and automation, pp 419–424 Floyd S, Pawashe C, Sitti M (2008) An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. Proceedings—IEEE international conference on robotics and automation, pp 419–424
Zurück zum Zitat Floyd S, Pawashe C, Sitti M (2009) Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot. Robot IEEE Trans 25(6):1332–1342CrossRef Floyd S, Pawashe C, Sitti M (2009) Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot. Robot IEEE Trans 25(6):1332–1342CrossRef
Zurück zum Zitat Folio D, Dahmen C, Wortmann T, Zeeshan MA, Shou K, Nelson BJ et al (2011) MRI magnetic signature imaging, tracking and navigation for targeted micro/nano-capsule therapeutics. Intelligent robots and systems (IROS), 2011 IEEE/RSJ international conference on vol 30, pp 1297–1303. IEEE Folio D, Dahmen C, Wortmann T, Zeeshan MA, Shou K, Nelson BJ et al (2011) MRI magnetic signature imaging, tracking and navigation for targeted micro/nano-capsule therapeutics. Intelligent robots and systems (IROS), 2011 IEEE/RSJ international conference on vol 30, pp 1297–1303. IEEE
Zurück zum Zitat Gillies GT, Ritter RC, Broaddus WC, Grady MS, Iii MAH, Mcneil RG (1994) Magnetic manipulation instrumentation for medical physics research. Rev Sci Instrum 65(3):533–562CrossRef Gillies GT, Ritter RC, Broaddus WC, Grady MS, Iii MAH, Mcneil RG (1994) Magnetic manipulation instrumentation for medical physics research. Rev Sci Instrum 65(3):533–562CrossRef
Zurück zum Zitat Go G, Choi H, Jeong S, Lee C, Bang JP, Ko SY et al (2014) Position-based magnetic field control for an electromagnetic actuated microrobot system. Sens Actuators, A 205(1):215–223CrossRef Go G, Choi H, Jeong S, Lee C, Bang JP, Ko SY et al (2014) Position-based magnetic field control for an electromagnetic actuated microrobot system. Sens Actuators, A 205(1):215–223CrossRef
Zurück zum Zitat Go G, Choi H, Jeong S, Lee C, Ko SY, Park JO et al (2015) Electromagnetic navigation system using simple coil structure (4 coils) for 3-d locomotive microrobot. IEEE Trans Magn 51(4):1–7 Go G, Choi H, Jeong S, Lee C, Ko SY, Park JO et al (2015) Electromagnetic navigation system using simple coil structure (4 coils) for 3-d locomotive microrobot. IEEE Trans Magn 51(4):1–7
Zurück zum Zitat Han B, Park SS (2008) Gradient waveform synthesis for magnetic propulsion using mri gradient coils. Phys Med Biol 53(17):4639–4649MathSciNetCrossRef Han B, Park SS (2008) Gradient waveform synthesis for magnetic propulsion using mri gradient coils. Phys Med Biol 53(17):4639–4649MathSciNetCrossRef
Zurück zum Zitat Hou MT, Shen HM, Jiang GL, Lu CN, Hsu IJ, Yeh JA (2010) A rolling locomotion method for untethered magnetic microrobots. Appl Phys Lett 96(2):024102CrossRef Hou MT, Shen HM, Jiang GL, Lu CN, Hsu IJ, Yeh JA (2010) A rolling locomotion method for untethered magnetic microrobots. Appl Phys Lett 96(2):024102CrossRef
Zurück zum Zitat Ishiyama K, Arai KI, Sendoh M, Yamazaki A (2002) Spiral-type micro-machine for medical applications. J Micromechatron 2(1):77–86CrossRef Ishiyama K, Arai KI, Sendoh M, Yamazaki A (2002) Spiral-type micro-machine for medical applications. J Micromechatron 2(1):77–86CrossRef
Zurück zum Zitat Ivan IA, Hwang G, Agnus J, Rakotondrabe M, Chaillet N, Régnier S (2011) First experiments on MagPieR: a planar wireless magnetic and piezoelectric microrobot. Robotics and automation (ICRA), 2011 IEEE international conference on vol 124, pp 102–108. IEEE Ivan IA, Hwang G, Agnus J, Rakotondrabe M, Chaillet N, Régnier S (2011) First experiments on MagPieR: a planar wireless magnetic and piezoelectric microrobot. Robotics and automation (ICRA), 2011 IEEE international conference on vol 124, pp 102–108. IEEE
Zurück zum Zitat Jeon S, Jang G, Choi H, Park S (2010) Magnetic navigation system with gradient and uniform saddle coils for the wireless manipulation of micro-robots in human blood vessels. Magn IEEE Trans 46(6):1943–1946CrossRef Jeon S, Jang G, Choi H, Park S (2010) Magnetic navigation system with gradient and uniform saddle coils for the wireless manipulation of micro-robots in human blood vessels. Magn IEEE Trans 46(6):1943–1946CrossRef
Zurück zum Zitat Jeon SM, Jang GH, Choi JH, Park SH, Park JO (2011) Precise manipulation of a microrobot in the pulsatile flow of human blood vessels using magnetic navigation system. J Appl Phys 109(7):07B316CrossRef Jeon SM, Jang GH, Choi JH, Park SH, Park JO (2011) Precise manipulation of a microrobot in the pulsatile flow of human blood vessels using magnetic navigation system. J Appl Phys 109(7):07B316CrossRef
Zurück zum Zitat Jeon SM, Jang GH, Choi HC, Park SH, Park JO (2012) Magnetic navigation system for the precise helical and translational motions of a microrobot in human blood vessels. J Appl Phys 111(7):07E702 Jeon SM, Jang GH, Choi HC, Park SH, Park JO (2012) Magnetic navigation system for the precise helical and translational motions of a microrobot in human blood vessels. J Appl Phys 111(7):07E702
Zurück zum Zitat Jeon SM, Nam JK, Choi K, Jang GH (2014) A self-positioning and rolling magnetic microrobot on arbitrary thin surfaces. J Appl Phys 115(17):17E303CrossRef Jeon SM, Nam JK, Choi K, Jang GH (2014) A self-positioning and rolling magnetic microrobot on arbitrary thin surfaces. J Appl Phys 115(17):17E303CrossRef
Zurück zum Zitat Jeong S, Choi H, Choi J, Yu C, Park JO, Park S (2010) Novel electromagnetic actuation (ema) method for 3-dimensional locomotion of intravascular microrobot. Sens Actuators, A 157(1):118–125CrossRef Jeong S, Choi H, Choi J, Yu C, Park JO, Park S (2010) Novel electromagnetic actuation (ema) method for 3-dimensional locomotion of intravascular microrobot. Sens Actuators, A 157(1):118–125CrossRef
Zurück zum Zitat Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2013) Three-dimensional closed-loop control of self-propelled microjets. Appl Phys Lett 103(17):172404CrossRef Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2013) Three-dimensional closed-loop control of self-propelled microjets. Appl Phys Lett 103(17):172404CrossRef
Zurück zum Zitat Khalil ISM, Dijkslag HC, Abelmann L, Misra S (2014) Magnetosperm: a microrobot that navigates using weak magnetic fields. Appl Phys Lett 104(22):223701CrossRef Khalil ISM, Dijkslag HC, Abelmann L, Misra S (2014) Magnetosperm: a microrobot that navigates using weak magnetic fields. Appl Phys Lett 104(22):223701CrossRef
Zurück zum Zitat Khamesee MB, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. IEEE/ASME Trans Mechatron 7(1):1–14CrossRef Khamesee MB, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. IEEE/ASME Trans Mechatron 7(1):1–14CrossRef
Zurück zum Zitat Kharboutly M, Gauthier M, Chaillet N (2010) Modeling the trajectory of a microparticle in a dielectrophoresis device. J Appl Phys 106(11):114312CrossRef Kharboutly M, Gauthier M, Chaillet N (2010) Modeling the trajectory of a microparticle in a dielectrophoresis device. J Appl Phys 106(11):114312CrossRef
Zurück zum Zitat Kim J, Kim SJ (2014) A novel two-dimensional locomotion scheme of a micro-robot with only a uniform magnetic field. Robotics and automation (ICRA), 2014 IEEE international conference on pp 2071–2076. IEEE Kim J, Kim SJ (2014) A novel two-dimensional locomotion scheme of a micro-robot with only a uniform magnetic field. Robotics and automation (ICRA), 2014 IEEE international conference on pp 2071–2076. IEEE
Zurück zum Zitat Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) Octomag: an electromagnetic system for 5-dof wireless micromanipulation. Robot IEEE Trans 26(6):1006–1017CrossRef Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) Octomag: an electromagnetic system for 5-dof wireless micromanipulation. Robot IEEE Trans 26(6):1006–1017CrossRef
Zurück zum Zitat Latulippe M, Martel S (2014) Dipole field navigation for targeted drug delivery. IEEE ras and embs international conference on biomedical robotics and biomechatronics, pp 320–325 Latulippe M, Martel S (2014) Dipole field navigation for targeted drug delivery. IEEE ras and embs international conference on biomedical robotics and biomechatronics, pp 320–325
Zurück zum Zitat Latulippe M, Felfoul O, Dupont PE, Martel S (2016) Enabling automated magnetic resonance imaging-based targeting assessment during dipole field navigation. Appl Phys Lett 108(6):157–184CrossRef Latulippe M, Felfoul O, Dupont PE, Martel S (2016) Enabling automated magnetic resonance imaging-based targeting assessment during dipole field navigation. Appl Phys Lett 108(6):157–184CrossRef
Zurück zum Zitat Magdanz V, Sanchez S, Schmidt OG (2013) Development of a sperm-flagella driven micro-bio-robot. Adv Mater 25(45):6581–6588CrossRef Magdanz V, Sanchez S, Schmidt OG (2013) Development of a sperm-flagella driven micro-bio-robot. Adv Mater 25(45):6581–6588CrossRef
Zurück zum Zitat Magdanz V, Medina-Sánchez M, Chen Y, Guix M, Schmidt OG (2015) How to improve spermbot performance. Adv Funct Mater 25(18):2763–2770CrossRef Magdanz V, Medina-Sánchez M, Chen Y, Guix M, Schmidt OG (2015) How to improve spermbot performance. Adv Funct Mater 25(18):2763–2770CrossRef
Zurück zum Zitat Magdanz V, Guix M, Hebenstreit F, Schmidt OG (2016) Dynamic polymeric microtubes for the remote‐controlled capture, guidance, and release of sperm cells. Advanced materials Magdanz V, Guix M, Hebenstreit F, Schmidt OG (2016) Dynamic polymeric microtubes for the remote‐controlled capture, guidance, and release of sperm cells. Advanced materials
Zurück zum Zitat Mahoney AW, Cowan DL, Miller KM, Abbott JJ (2012) Control of untethered magnetically actuated tools using a rotating permanent magnet in any position. Robotics and automation (ICRA), 2012 IEEE international conference on vol 20, pp 3375–3380. IEEE Mahoney AW, Cowan DL, Miller KM, Abbott JJ (2012) Control of untethered magnetically actuated tools using a rotating permanent magnet in any position. Robotics and automation (ICRA), 2012 IEEE international conference on vol 20, pp 3375–3380. IEEE
Zurück zum Zitat Mahoney AW, Nelson ND, Peyer KE, Nelson BJ, Abbott JJ (2014) Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems. Appl Phys Lett 104(14):144101CrossRef Mahoney AW, Nelson ND, Peyer KE, Nelson BJ, Abbott JJ (2014) Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems. Appl Phys Lett 104(14):144101CrossRef
Zurück zum Zitat Martel S, Mathieu JB, Felfoul O, Chanu A, Aboussouan E, Tamaz S et al (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90(11):114105CrossRef Martel S, Mathieu JB, Felfoul O, Chanu A, Aboussouan E, Tamaz S et al (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90(11):114105CrossRef
Zurück zum Zitat Mathieu JB, Martel S (2006) Magnetic steering of iron oxide microparticles using propulsion gradient coils in MRI. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society. Conference vol 1, pp 472–475 Mathieu JB, Martel S (2006) Magnetic steering of iron oxide microparticles using propulsion gradient coils in MRI. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society. Conference vol 1, pp 472–475
Zurück zum Zitat Mathieu JB, Martel S (2010) Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI scanner. Magn Reson Med 63(5):1336–1345CrossRef Mathieu JB, Martel S (2010) Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI scanner. Magn Reson Med 63(5):1336–1345CrossRef
Zurück zum Zitat Mathieu JB, Martel S, Yahia L, Soulez G, Beaudoin G (2003) Preliminary studies for using magnetic resonance imaging systems as a mean of propulsion for microrobots in blood vessels and evaluation of ferromagnetic artefacts. Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian conference on vol 2, pp 835–838. IEEE Mathieu JB, Martel S, Yahia L, Soulez G, Beaudoin G (2003) Preliminary studies for using magnetic resonance imaging systems as a mean of propulsion for microrobots in blood vessels and evaluation of ferromagnetic artefacts. Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian conference on vol 2, pp 835–838. IEEE
Zurück zum Zitat Mcneil RG, Ritter RC, Wang B, Lawson MA, Gillies GT, Wika KG et al (1995a) Functional design features and initial performance characteristics of a magnetic-implant guidance system for stereotactic neurosurgery. IEEE Trans Biomed Eng 42(8):793–801CrossRef Mcneil RG, Ritter RC, Wang B, Lawson MA, Gillies GT, Wika KG et al (1995a) Functional design features and initial performance characteristics of a magnetic-implant guidance system for stereotactic neurosurgery. IEEE Trans Biomed Eng 42(8):793–801CrossRef
Zurück zum Zitat Mcneil RG, Ritter RC, Wang B, Lawson MA, Gillies GT, Wika KG et al (1995b) Characteristics of an improved magnetic-implant guidance system. IEEE Trans Bio-med Eng 42(8):802–808CrossRef Mcneil RG, Ritter RC, Wang B, Lawson MA, Gillies GT, Wika KG et al (1995b) Characteristics of an improved magnetic-implant guidance system. IEEE Trans Bio-med Eng 42(8):802–808CrossRef
Zurück zum Zitat Mei T, Chen Y, Fu G, Kong D (2002) Wireless drive and control of a swimming microrobot. In: Robotics and automation, 2002. Proceedings ICRA’02. IEEE international conference on vol 2, pp 1131–1136. IEEE Mei T, Chen Y, Fu G, Kong D (2002) Wireless drive and control of a swimming microrobot. In: Robotics and automation, 2002. Proceedings ICRA’02. IEEE international conference on vol 2, pp 1131–1136. IEEE
Zurück zum Zitat Lucarini G, Palagi S, Beccai L, Menciassi, A (2014) A power-efficient propulsion method for magnetic microrobots. International journal of advanced robotic systems, 11 Lucarini G, Palagi S, Beccai L, Menciassi, A (2014) A power-efficient propulsion method for magnetic microrobots. International journal of advanced robotic systems, 11
Zurück zum Zitat Mirko S, Reinmar K, Martin K, Nasreddin A, Jennifer F, Vogl TJ (2004) Vascular guide wire navigation with a magnetic guidance system: experimental results in a phantom. Radiology 232(2):475–481CrossRef Mirko S, Reinmar K, Martin K, Nasreddin A, Jennifer F, Vogl TJ (2004) Vascular guide wire navigation with a magnetic guidance system: experimental results in a phantom. Radiology 232(2):475–481CrossRef
Zurück zum Zitat Mirkovic T, Zacharia NS, Scholes GD, Ozin GA (2010) Nanolocomotion—catalytic nanomotors and nanorotors. Small 6(2):159–167CrossRef Mirkovic T, Zacharia NS, Scholes GD, Ozin GA (2010) Nanolocomotion—catalytic nanomotors and nanorotors. Small 6(2):159–167CrossRef
Zurück zum Zitat Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228CrossRef Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228CrossRef
Zurück zum Zitat Molloy JE, Padgett MJ (2010) Lights, action: optical tweezers. Contemp Phys 43(4):241–258CrossRef Molloy JE, Padgett MJ (2010) Lights, action: optical tweezers. Contemp Phys 43(4):241–258CrossRef
Zurück zum Zitat Moo JGS, Martin P (2015) Chemical energy powered nano/micro/macromotors and the environment. Chem A Eur J 21(1):58–72CrossRef Moo JGS, Martin P (2015) Chemical energy powered nano/micro/macromotors and the environment. Chem A Eur J 21(1):58–72CrossRef
Zurück zum Zitat Nagy Z, Nelson BJ (2012) Lagrangian modeling of the magnetization and the magnetic torque on assembled soft-magnetic mems devices for fast computation and analysis. IEEE Trans Robot 28(4):787–797CrossRef Nagy Z, Nelson BJ (2012) Lagrangian modeling of the magnetization and the magnetic torque on assembled soft-magnetic mems devices for fast computation and analysis. IEEE Trans Robot 28(4):787–797CrossRef
Zurück zum Zitat Nagy Z, Ergeneman O, Abbott JJ, Hutter M, Hirt AM, Nelson BJ (2008) Modeling assembled-MEMS microrobots for wireless magnetic control. Proceedings—IEEE international conference on robotics and automation, pp 874–879 Nagy Z, Ergeneman O, Abbott JJ, Hutter M, Hirt AM, Nelson BJ (2008) Modeling assembled-MEMS microrobots for wireless magnetic control. Proceedings—IEEE international conference on robotics and automation, pp 874–879
Zurück zum Zitat Pak OS, Gao W, Wang J, Lauga E (2011) High-speed propulsion of flexible nanowire motors: theory and experiments. Soft Mater 7(18):8169–8181CrossRef Pak OS, Gao W, Wang J, Lauga E (2011) High-speed propulsion of flexible nanowire motors: theory and experiments. Soft Mater 7(18):8169–8181CrossRef
Zurück zum Zitat Palagi S, Pensabene V, Beccai L, Mazzolai B, Menciassi A, Dario P (2011) Design and development of a soft magnetically-propelled swimming microrobot. Robotics and automation (ICRA), 2011 IEEE international conference on vol 47, pp 5109–5114. IEEE Palagi S, Pensabene V, Beccai L, Mazzolai B, Menciassi A, Dario P (2011) Design and development of a soft magnetically-propelled swimming microrobot. Robotics and automation (ICRA), 2011 IEEE international conference on vol 47, pp 5109–5114. IEEE
Zurück zum Zitat Palagi S, Mazzolai B, Innocenti C, Sangregorio C, Beccai L (2013) How does buoyancy of hydrogel microrobots affect their magnetic propulsion in liquids? Appl Phys Lett 102(12):124102CrossRef Palagi S, Mazzolai B, Innocenti C, Sangregorio C, Beccai L (2013) How does buoyancy of hydrogel microrobots affect their magnetic propulsion in liquids? Appl Phys Lett 102(12):124102CrossRef
Zurück zum Zitat Pawashe C, Floyd S, Sitti M (2009) Multiple magnetic microrobot control using electrostatic anchoring. Appl Phys Lett 94(16):164108CrossRef Pawashe C, Floyd S, Sitti M (2009) Multiple magnetic microrobot control using electrostatic anchoring. Appl Phys Lett 94(16):164108CrossRef
Zurück zum Zitat Qiu F, Mhanna R, Zhang L, Ding Y, Sugihara K, Zenobiwong M et al (2013) Artificial bacterial flagella functionalized with temperature-sensitive liposomes for biomedical applications. Solid-state sensors, actuators and microsystems (Transducers and Eurosensors XXVII), 2013 Transducers and Eurosensors XXVII: The 17th international conference on vol 196, pp 2130-2133. IEEE Qiu F, Mhanna R, Zhang L, Ding Y, Sugihara K, Zenobiwong M et al (2013) Artificial bacterial flagella functionalized with temperature-sensitive liposomes for biomedical applications. Solid-state sensors, actuators and microsystems (Transducers and Eurosensors XXVII), 2013 Transducers and Eurosensors XXVII: The 17th international conference on vol 196, pp 2130-2133. IEEE
Zurück zum Zitat Samuel S, Solovev AA, Sabine S, Schmidt OG (2011) Controlled manipulation of multiple cells using catalytic microbots. Chem Commun 47(2):698–700CrossRef Samuel S, Solovev AA, Sabine S, Schmidt OG (2011) Controlled manipulation of multiple cells using catalytic microbots. Chem Commun 47(2):698–700CrossRef
Zurück zum Zitat Sehyuk Y, Evin G, Gracias DH, Metin S (2014) Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Bio-med Eng 61(2):513–521CrossRef Sehyuk Y, Evin G, Gracias DH, Metin S (2014) Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Bio-med Eng 61(2):513–521CrossRef
Zurück zum Zitat Sendoh M, Ajiro N, Ishiyama K, Inoue M, Arai KI, Hayase T et al (1999) Effect of machine shape on swimming properties of the spiral-type magnetic micro-machine. IEEE Trans Magn 35(5):3688–3690CrossRef Sendoh M, Ajiro N, Ishiyama K, Inoue M, Arai KI, Hayase T et al (1999) Effect of machine shape on swimming properties of the spiral-type magnetic micro-machine. IEEE Trans Magn 35(5):3688–3690CrossRef
Zurück zum Zitat Soichiro T, Zhang L, Qiu F et al (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 24(6):811–816CrossRef Soichiro T, Zhang L, Qiu F et al (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 24(6):811–816CrossRef
Zurück zum Zitat Srivastava SK, Medina‐Sánchez M, Koch B, Schmidt OG (2015) Medibots: dual‐action biogenic microdaggers for single‐cell surgery and drug release. Advanced Materials Srivastava SK, Medina‐Sánchez M, Koch B, Schmidt OG (2015) Medibots: dual‐action biogenic microdaggers for single‐cell surgery and drug release. Advanced Materials
Zurück zum Zitat Tunay I (2004) Modeling magnetic catheters in external fields. Engineering in medicine and biology society, 2004. IEMBS ‘04. 26th annual international conference of the IEEE, vol 1, pp 2006–2009. IEEE Tunay I (2004) Modeling magnetic catheters in external fields. Engineering in medicine and biology society, 2004. IEMBS ‘04. 26th annual international conference of the IEEE, vol 1, pp 2006–2009. IEEE
Zurück zum Zitat Veronika M, Schmidt OG (2014) Spermbots: potential impact for drug delivery and assisted reproductive technologies. Expert Opin Drug Deliv 11(8):1125–1129CrossRef Veronika M, Schmidt OG (2014) Spermbots: potential impact for drug delivery and assisted reproductive technologies. Expert Opin Drug Deliv 11(8):1125–1129CrossRef
Zurück zum Zitat Vollmers K, Frutiger DR, Kratochvil BE, Nelson BJ (2008) Wireless resonant magnetic microactuator for untethered mobile microrobots. Appl Phys Lett 92(14):144103CrossRef Vollmers K, Frutiger DR, Kratochvil BE, Nelson BJ (2008) Wireless resonant magnetic microactuator for untethered mobile microrobots. Appl Phys Lett 92(14):144103CrossRef
Zurück zum Zitat Wang X, Solovev AA, Ananth AN, Gracias DH, Samuel S, Schmidt OG (2013) Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery. Nanoscale 5(4):1294–1297CrossRef Wang X, Solovev AA, Ananth AN, Gracias DH, Samuel S, Schmidt OG (2013) Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery. Nanoscale 5(4):1294–1297CrossRef
Zurück zum Zitat Xu T, Yu J, Yan X, Choi H, Zhang L (2015) Magnetic actuation based motion control for microrobots: an overview. Micromachines 6(9):1346–1364CrossRef Xu T, Yu J, Yan X, Choi H, Zhang L (2015) Magnetic actuation based motion control for microrobots: an overview. Micromachines 6(9):1346–1364CrossRef
Zurück zum Zitat Ye Z, Sitti M (2014) Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. Lab Chip 14(13):2177–2182CrossRef Ye Z, Sitti M (2014) Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. Lab Chip 14(13):2177–2182CrossRef
Zurück zum Zitat Yesin KB, Vollmers K, Nelson BJ (2006) Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int J Robot Res 25(5–6):527–536CrossRef Yesin KB, Vollmers K, Nelson BJ (2006) Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int J Robot Res 25(5–6):527–536CrossRef
Zurück zum Zitat Yu C (2010) Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot. Sens Actuators, A 161(1):297–304CrossRef Yu C (2010) Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot. Sens Actuators, A 161(1):297–304CrossRef
Zurück zum Zitat Zhou Y, Regnier S, Sitti M (2014) Rotating magnetic miniature swimming robots with multiple flexible flagella. Robot IEEE Trans 30(1):3–13CrossRef Zhou Y, Regnier S, Sitti M (2014) Rotating magnetic miniature swimming robots with multiple flexible flagella. Robot IEEE Trans 30(1):3–13CrossRef
Metadaten
Titel
An overview of magnetic micro-robot systems for biomedical applications
verfasst von
Liang Zheng
Li-guo Chen
Hai-bo Huang
Xiang-peng Li
Lei-lei Zhang
Publikationsdatum
25.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-2948-6

Weitere Artikel der Ausgabe 10/2016

Microsystem Technologies 10/2016 Zur Ausgabe

Neuer Inhalt