Skip to main content
Erschienen in: Automatic Control and Computer Sciences 8/2020

01.12.2020

Analysis of Safety Methods for a New Generation of Automobiles

verfasst von: K. V. Vasil’eva, E. Yu. Pavlenko, P. V. Sem’yanov

Erschienen in: Automatic Control and Computer Sciences | Ausgabe 8/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main automobile infrastructure trends are considered. New attack vectors related to the implementation of V2X and IVI technologies are presented, and existing methods of their detection and prevention are analyzed. Requirements are formulated for the information security that meets the security features of new-generation motor vehicles.
Literatur
1.
Zurück zum Zitat Kalinin, M., Krundyshev, V., Zegzhda, P., and Belenko, V., Network security architectures for VANET, ACM International Conference Proceeding Series, 2017, pp. 73–79. Kalinin, M., Krundyshev, V., Zegzhda, P., and Belenko, V., Network security architectures for VANET, ACM International Conference Proceeding Series, 2017, pp. 73–79.
2.
Zurück zum Zitat Kalinin, M., Zegzhda, P., Zegzhda, D., Vasiliev, Y., and Belenko, V., Software defined security for vehicular ad hoc networks, 2016 International Conference on Information and Communication Technology Convergence, 2016, pp. 533–537. Kalinin, M., Zegzhda, P., Zegzhda, D., Vasiliev, Y., and Belenko, V., Software defined security for vehicular ad hoc networks, 2016 International Conference on Information and Communication Technology Convergence, 2016, pp. 533–537.
3.
Zurück zum Zitat Kalinin, M.O., Krundyshev, V.M., Rezedinova, E.Y., and Reshetov, D.V., Hierarchical software-defined security management for large-scale dynamic networks, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 906–911.CrossRef Kalinin, M.O., Krundyshev, V.M., Rezedinova, E.Y., and Reshetov, D.V., Hierarchical software-defined security management for large-scale dynamic networks, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 906–911.CrossRef
5.
Zurück zum Zitat Kalinin, M.O., Krundyshev, V.M., and Semianov, P.V., Architectures for building secure vehicular networks based on SDN technology, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 907–914.CrossRef Kalinin, M.O., Krundyshev, V.M., and Semianov, P.V., Architectures for building secure vehicular networks based on SDN technology, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 907–914.CrossRef
6.
Zurück zum Zitat Zegzhda, P.D., Ivanov, D.V., Moskvin, D.A., and Kubrin, G.S., Actual security threats for vehicular and mobile ad hoc networks, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 993–999.CrossRef Zegzhda, P.D., Ivanov, D.V., Moskvin, D.A., and Kubrin, G.S., Actual security threats for vehicular and mobile ad hoc networks, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 993–999.CrossRef
7.
Zurück zum Zitat Scalas, M. and Giacinto, G., Automotive Cybersecurity: Foundations for Next-Generation Vehicles, 2019. https://arxiv.org/pdf/1910.01037.pdf. Scalas, M. and Giacinto, G., Automotive Cybersecurity: Foundations for Next-Generation Vehicles, 2019. https://​arxiv.​org/​pdf/​1910.​01037.​pdf.​
8.
Zurück zum Zitat Anisimov, V.G., Anisimov, E.G., Zegzhda, P.D., and Suprun, A.F., The problem of innovative development of information security systems in the transport sector, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1105–1110.CrossRef Anisimov, V.G., Anisimov, E.G., Zegzhda, P.D., and Suprun, A.F., The problem of innovative development of information security systems in the transport sector, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1105–1110.CrossRef
9.
Zurück zum Zitat Upstream Security. Global Automotive Cybersecurity Report, 2019. https://industrytoday.com/wp-content/uploads/2018/12/Upstream-Security-Global-Automotive-Cybersecurity-Report-2019.pdf. Upstream Security. Global Automotive Cybersecurity Report, 2019. https://​industrytoday.​com/​wp-content/​uploads/​2018/​12/​Upstream-Security-Global-Automotive-Cybersecurity-Report-2019.​pdf.​
10.
Zurück zum Zitat Mazloom, S. and Mason, G., A Security Analysis of an In Vehicle Infotainment and App Platform, 2016. http://damonmccoy.com/papers/ivi-woot.pdf. Mazloom, S. and Mason, G., A Security Analysis of an In Vehicle Infotainment and App Platform, 2016. http://​damonmccoy.​com/​papers/​ivi-woot.​pdf.​
11.
Zurück zum Zitat Hickman, J., Ridin’ With Apple CarPlay, 2019. https://thebinaryhick.blog/2019/05/08/ridin-with-apple-carplay/. Hickman, J., Ridin’ With Apple CarPlay, 2019. https://​thebinaryhick.​blog/​2019/​05/​08/​ridin-with-apple-carplay/​.​
12.
Zurück zum Zitat Hickman, J., Driving Android Auto, 2019. https://dfir.pubpub.org/pub/716tlra7. Hickman, J., Driving Android Auto, 2019. https://​dfir.​pubpub.​org/​pub/​716tlra7.​
13.
Zurück zum Zitat Aleksandrova, E.B., Methods of group authentication for low-resource vehicle and flying self-organizing networks, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 947–958.CrossRef Aleksandrova, E.B., Methods of group authentication for low-resource vehicle and flying self-organizing networks, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 947–958.CrossRef
14.
Zurück zum Zitat Aleksandrova, E.B., Shkorkina, E.N., and Kalinin, M.O., Organization of the quantum cryptographic keys distribution system for transportation infrastructure users, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 969–971.CrossRef Aleksandrova, E.B., Shkorkina, E.N., and Kalinin, M.O., Organization of the quantum cryptographic keys distribution system for transportation infrastructure users, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 969–971.CrossRef
15.
Zurück zum Zitat Aleksandrova, E.B., Yarmak, A.V., and Kalinin, M.O., Analysis of approaches to group authentication in large-scale industrial systems, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 879–882.CrossRef Aleksandrova, E.B., Yarmak, A.V., and Kalinin, M.O., Analysis of approaches to group authentication in large-scale industrial systems, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 879–882.CrossRef
16.
Zurück zum Zitat Aleksandrova, E.B., Zegzhda, D.P., and Konoplev, A.S., Applying the group signature for entity authentication in distributed grid computing networks, Autom. Control Comput. Sci., 2016, vol. 50, no. 8, pp. 739–742.CrossRef Aleksandrova, E.B., Zegzhda, D.P., and Konoplev, A.S., Applying the group signature for entity authentication in distributed grid computing networks, Autom. Control Comput. Sci., 2016, vol. 50, no. 8, pp. 739–742.CrossRef
17.
Zurück zum Zitat Shenets, N.N., Authentication in dynamic peer-to-peer networks based on homomorphic secret sharing, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 936–946.CrossRef Shenets, N.N., Authentication in dynamic peer-to-peer networks based on homomorphic secret sharing, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 936–946.CrossRef
18.
Zurück zum Zitat Shenets, N.N., Security infrastructure of FANET based on secret sharing and authenticated encryption, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 857–864.CrossRef Shenets, N.N., Security infrastructure of FANET based on secret sharing and authenticated encryption, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 857–864.CrossRef
21.
Zurück zum Zitat Ovasapyan, T.D., Moskvin, D.A., and Kalinin, M.O., Using neural networks to detect internal intruders in VANETs, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 954–958.CrossRef Ovasapyan, T.D., Moskvin, D.A., and Kalinin, M.O., Using neural networks to detect internal intruders in VANETs, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 954–958.CrossRef
23.
Zurück zum Zitat Belenko, V., Krundyshev, V., and Kalinin, M., Intrusion detection for Internet of Things applying metagenome fast analysis, Proceedings of the 3rd World Conference on Smart Trends in Systems, Security and Sustainability, WorldS4, 2019, pp. 129–135. Belenko, V., Krundyshev, V., and Kalinin, M., Intrusion detection for Internet of Things applying metagenome fast analysis, Proceedings of the 3rd World Conference on Smart Trends in Systems, Security and Sustainability, WorldS4, 2019, pp. 129–135.
24.
Zurück zum Zitat Demidov, R.A., Pechenkin, A.I., Zegzhda, P.D., and Kalinin, M.O., Application model of modern artificial neural network methods for the analysis of information systems security, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 965–970.CrossRef Demidov, R.A., Pechenkin, A.I., Zegzhda, P.D., and Kalinin, M.O., Application model of modern artificial neural network methods for the analysis of information systems security, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 965–970.CrossRef
25.
Zurück zum Zitat Belenko, V., Chernenko, V., Krundyshev, V., and Kalinin, M., Data-driven failure analysis for the cyber physical infrastructures, 2019 IEEE International Conference on Industrial Cyber Physical Systems, ICPS 2019, 2019, pp. 775–779. Belenko, V., Chernenko, V., Krundyshev, V., and Kalinin, M., Data-driven failure analysis for the cyber physical infrastructures, 2019 IEEE International Conference on Industrial Cyber Physical Systems, ICPS 2019, 2019, pp. 775–779.
27.
Zurück zum Zitat Busygin, A.G., Konoplev, A.S., and Zegzhda, D.P., Providing stable operation of self-organizing cyber-physical system via adaptive topology management methods using blockchain-like directed acyclic graph, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1080–1083.CrossRef Busygin, A.G., Konoplev, A.S., and Zegzhda, D.P., Providing stable operation of self-organizing cyber-physical system via adaptive topology management methods using blockchain-like directed acyclic graph, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1080–1083.CrossRef
28.
Zurück zum Zitat Pavlenko, E., Zegzhda, D., and Shtyrkina, A., Criterion of cyber-physical systems sustainability, CEUR Workshop Proc., 2019, vol. 2603, pp. 60–64. Pavlenko, E., Zegzhda, D., and Shtyrkina, A., Criterion of cyber-physical systems sustainability, CEUR Workshop Proc., 2019, vol. 2603, pp. 60–64.
29.
Zurück zum Zitat Ivanov, D.V. and Moskvin, D.A., Application of fractal methods to ensure the cyber-resilience of self-organizing networks, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 4, pp. 336–341. Ivanov, D.V. and Moskvin, D.A., Application of fractal methods to ensure the cyber-resilience of self-organizing networks, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 4, pp. 336–341.
30.
Zurück zum Zitat Ovasapyan, T.D. and Ivanov, D.V., Security provision in wireless sensor networks on the basis of the trust model, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1042–1048.CrossRef Ovasapyan, T.D. and Ivanov, D.V., Security provision in wireless sensor networks on the basis of the trust model, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1042–1048.CrossRef
31.
Zurück zum Zitat Nilsson, D., Larson, U., and Jonsson, E., Efficient In-Vehicle Delayed Data Authentication Based on Compound Message Authentication Codes, 2018. https://IEEExplore.IEEE.org/document/4657091. Nilsson, D., Larson, U., and Jonsson, E., Efficient In-Vehicle Delayed Data Authentication Based on Compound Message Authentication Codes, 2018. https://​IEEExplore.​IEEE.​org/​document/​4657091.​
32.
Zurück zum Zitat Hartwiche, F., Can with Flexible Data-Rate, 2012. https://www.can-cia.org/fileadmin/resources/documents/proceedings/2012_hartwich.pdf. Hartwiche, F., Can with Flexible Data-Rate, 2012. https://​www.​can-cia.​org/​fileadmin/​resources/​documents/​proceedings/​2012_​hartwich.​pdf.​
33.
Zurück zum Zitat Levi, M., Allouche, Y., and Kontorovich, A., Advanced Analytics for Connected Cars Cyber Security, 2017. https://arxiv.org/pdf/1711.01939. Levi, M., Allouche, Y., and Kontorovich, A., Advanced Analytics for Connected Cars Cyber Security, 2017. https://​arxiv.​org/​pdf/​1711.​01939.​
34.
Zurück zum Zitat Cho, K. and Shin, K., Fingerprinting Electronic Control Units for Vehicle Intrusion Detection, 2016. https://www.usenix.org/system/files/conference/usenixsЭБYrity16/sec16_paper_cho.pdf. Cho, K. and Shin, K., Fingerprinting Electronic Control Units for Vehicle Intrusion Detection, 2016. https://​www.​usenix.​org/​system/​files/​conference/​usenixsЭБYrity16​/​sec16_​paper_​cho.​pdf.​
35.
Zurück zum Zitat Kneiband, M. and Huth, C., On the Fingerprinting of Electronic Control Units Using Physical Characteristics in Controller Area Networks, 2017. https://pdfs.semanticscholar.org/3c6a/1315926ec021583fc507a8cfbf649c4ea068.pdf. Kneiband, M. and Huth, C., On the Fingerprinting of Electronic Control Units Using Physical Characteristics in Controller Area Networks, 2017. https://​pdfs.​semanticscholar.​org/​3c6a/​1315926ec021583f​c507a8cfbf649c4e​a068.​pdf.​
36.
Zurück zum Zitat Choi, W., Jo, H., Woo, S., and Chun, J., Identifying ECUs Using Inimitable Characteristics of Signals in Controller Area Networks, 2016. https://arxiv.org/pdf/1607.00497.pdf. Choi, W., Jo, H., Woo, S., and Chun, J., Identifying ECUs Using Inimitable Characteristics of Signals in Controller Area Networks, 2016. https://​arxiv.​org/​pdf/​1607.​00497.​pdf.​
37.
Zurück zum Zitat Song, H., Kim, H.R., and Kim, H.K., Intrusion Detection System Based on the Analysis of Time Intervals of CAN messages for In-Vehicle Network, 2016. https://awesong-kor.github.io/files/Intrusion%20Detection%20 System%20Based%20on%20the%20Analysis%20of%20Time%20Intervals%20of%20CAN%20Messages%20 for%20In-Vehicle%20Network.pdf. Song, H., Kim, H.R., and Kim, H.K., Intrusion Detection System Based on the Analysis of Time Intervals of CAN messages for In-Vehicle Network, 2016. https://​awesong-kor.​github.​io/​files/​Intrusion%20Detection%20 System%20Based%20on%20the%20Analysis%20of%20Time%20Intervals%20of%20CAN%20Messages%20 for%20In-Vehicle%20Network.pdf.
38.
Zurück zum Zitat Beltrame, G., et al., xLuna: A Real-Time, Dependable Kernel for Embedded Systems, 2010. https://amstel.estec. esa.int/tecedm/website/biblio/FossatiIPSOC2010_2.pdf. Beltrame, G., et al., xLuna: A Real-Time, Dependable Kernel for Embedded Systems, 2010. https://​amstel.​estec.​ esa.int/tecedm/website/biblio/FossatiIPSOC2010_2.pdf.
39.
Zurück zum Zitat Serra, J., Rodrigues, J., Almeid, T., and Andmendes, A., Multi-Criticality Hypervisor for Automotive Domain, 2014. https://st3.ning.com/topology/rest/1.0/file/get/1007753?profile=original. Serra, J., Rodrigues, J., Almeid, T., and Andmendes, A., Multi-Criticality Hypervisor for Automotive Domain, 2014. https://​st3.​ning.​com/​topology/​rest/​1.​0/​file/​get/​1007753?​profile=​original.​
Metadaten
Titel
Analysis of Safety Methods for a New Generation of Automobiles
verfasst von
K. V. Vasil’eva
E. Yu. Pavlenko
P. V. Sem’yanov
Publikationsdatum
01.12.2020
Verlag
Pleiades Publishing
Erschienen in
Automatic Control and Computer Sciences / Ausgabe 8/2020
Print ISSN: 0146-4116
Elektronische ISSN: 1558-108X
DOI
https://doi.org/10.3103/S0146411620080349

Weitere Artikel der Ausgabe 8/2020

Automatic Control and Computer Sciences 8/2020 Zur Ausgabe

Neuer Inhalt