Skip to main content
Erschienen in: Rheologica Acta 6/2020

07.05.2020 | Original Contribution

Analysis of the flow behavior of electrorheological fluids containing polypyrrole nanoparticles or polypyrrole/silica nanocomposite particles

verfasst von: Youngwook P. Seo, Sangsok Han, Jihun Kim, Hyoung Jin Choi, Yongsok Seo

Erschienen in: Rheologica Acta | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A four-parameter model (Seo-Seo model) was used to analyze the flow behavior of some electrorheological (ER) fluids containing polypyrrole (PPy) nanoparticles, nanocomposite particles of conductive polypyrrole confined in mesoporous silica (MCM-41), and core-shell-structured SiO2/polypyrrole nanoparticles. The static yield stress predictions by the model were compared with the experimental data and dynamic yield stress obtained from the Bingham model and/or Cho-Choi-Jhon (CCJ) model. The static yield stress values were larger than the dynamic yield stress values. It was also found that the static yield stress of the polypyrrole suspension had a quadratic dependence on the electric field strength as predicted by the electric polarization model whereas those of the nanocomposite suspensions showed 1.5 power-law dependency. A master curve describing the yield stress data dependence on the electric field strength was obtained using a single-parameter scaling function to interpret the underlying mechanism of ER activity. A simple method for evaluating the activity mechanism criterion has been proposed and applied to the ER response of those three kinds of suspension. The results show that the critical electric field strength should be checked before the conduction mechanism is asserted, even if the yield stress plot shows 1.5 power-law dependence on the electric field strength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson RA (1994) Electrostatic forces in an ideal spherical-particle electrorheological fluid. Langmuir 10:2917–2928CrossRef Anderson RA (1994) Electrostatic forces in an ideal spherical-particle electrorheological fluid. Langmuir 10:2917–2928CrossRef
Zurück zum Zitat Armes SP (1996) Conducting polymer colloids. Current Opin Colloid Interf Sci 1:214–220CrossRef Armes SP (1996) Conducting polymer colloids. Current Opin Colloid Interf Sci 1:214–220CrossRef
Zurück zum Zitat Boissy C, Atten P, Foulc JN (1996) On the role of conductivities and frequency in the electrorheological effect. J Intel Mater Syst Struct 7:599–603CrossRef Boissy C, Atten P, Foulc JN (1996) On the role of conductivities and frequency in the electrorheological effect. J Intel Mater Syst Struct 7:599–603CrossRef
Zurück zum Zitat Cheng Q, Pavlinek V, Lengalova A, Li C, He Y, Saha P (2006a) Conducting polypyrrole confined in ordered mesoporous silica SBA-15 channels: preparation and its electrorheology. Micropor Mesopo Mater 93:263–269CrossRef Cheng Q, Pavlinek V, Lengalova A, Li C, He Y, Saha P (2006a) Conducting polypyrrole confined in ordered mesoporous silica SBA-15 channels: preparation and its electrorheology. Micropor Mesopo Mater 93:263–269CrossRef
Zurück zum Zitat Cheng Q, He Y, Pavlinek V, Lengalova A, Li C, Saha P (2006b) Preparation and electrorheology of new mesoporous polypyrrole/MCM-41 suspensions. J Mater Sci 41:5047–5049CrossRef Cheng Q, He Y, Pavlinek V, Lengalova A, Li C, Saha P (2006b) Preparation and electrorheology of new mesoporous polypyrrole/MCM-41 suspensions. J Mater Sci 41:5047–5049CrossRef
Zurück zum Zitat Cho MS, Choi HJ, Ahn WS (2004) Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels. Langmuir 20:202–207CrossRef Cho MS, Choi HJ, Ahn WS (2004) Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels. Langmuir 20:202–207CrossRef
Zurück zum Zitat Cho MS, Choi HJ, Jhon MS (2005) Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46:11484–11488CrossRef Cho MS, Choi HJ, Jhon MS (2005) Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46:11484–11488CrossRef
Zurück zum Zitat Choi HJ, Cho MS, Kim JW, Kim CA, Jhon MS (2001) A yield stress scaling function for electrorheological fluids. Appl Phys Lett 78:3806–3808CrossRef Choi HJ, Cho MS, Kim JW, Kim CA, Jhon MS (2001) A yield stress scaling function for electrorheological fluids. Appl Phys Lett 78:3806–3808CrossRef
Zurück zum Zitat Choi HJ, Zhang WL, Kim S, Seo Y (2014) Core-shell structured electro- and magneto-responsive materials, fabrication and characteristics. Materials 7:7460–7471CrossRef Choi HJ, Zhang WL, Kim S, Seo Y (2014) Core-shell structured electro- and magneto-responsive materials, fabrication and characteristics. Materials 7:7460–7471CrossRef
Zurück zum Zitat Choi J, Han S, Kim H, Sohn E, Choi HJ, Seo Y (2019) Suspensions of hollow polydivinylbenzene nanoparticles decorated with Fe3O4 nanoparticles as magnetorheological fluids for microfluidics applications. ACS Appl Nano Mater 2:6939–6947CrossRef Choi J, Han S, Kim H, Sohn E, Choi HJ, Seo Y (2019) Suspensions of hollow polydivinylbenzene nanoparticles decorated with Fe3O4 nanoparticles as magnetorheological fluids for microfluidics applications. ACS Appl Nano Mater 2:6939–6947CrossRef
Zurück zum Zitat Chuah WH, Zhang WL, Choi HJ, Seo Y (2015) Magnetorheology of core-shell structured carbonyl iron / polystyrene foam nanoparticles suspension with enhanced stability. Macromolecules 48:7311–7319CrossRef Chuah WH, Zhang WL, Choi HJ, Seo Y (2015) Magnetorheology of core-shell structured carbonyl iron / polystyrene foam nanoparticles suspension with enhanced stability. Macromolecules 48:7311–7319CrossRef
Zurück zum Zitat Davis LC (1992) Polarization forces and conductivity effects in electrorheological fluids. J Appl Phys 72:1334–1340CrossRef Davis LC (1992) Polarization forces and conductivity effects in electrorheological fluids. J Appl Phys 72:1334–1340CrossRef
Zurück zum Zitat Davis LC, Ginder JM (1995) In: Havelka KO, Filisko FE (eds) Electrostatic forces in electrorheological fluids progress in electrorheology. Plenum, New York, pp 107–114 Davis LC, Ginder JM (1995) In: Havelka KO, Filisko FE (eds) Electrostatic forces in electrorheological fluids progress in electrorheology. Plenum, New York, pp 107–114
Zurück zum Zitat Dong YZ, Seo Y, Choi HJ (2019) Recent development of electro-response smart electrorheological fluids. Soft Matter 15:3473–3486CrossRef Dong YZ, Seo Y, Choi HJ (2019) Recent development of electro-response smart electrorheological fluids. Soft Matter 15:3473–3486CrossRef
Zurück zum Zitat Espin MJ, Delgado AV, Plocharski JZ (2006) Effect of additives and measurement procedure on the electrorheology of hematite/ silicone oil suspensions. Rheol Acta 45:865–876CrossRef Espin MJ, Delgado AV, Plocharski JZ (2006) Effect of additives and measurement procedure on the electrorheology of hematite/ silicone oil suspensions. Rheol Acta 45:865–876CrossRef
Zurück zum Zitat Fang FF, Liu YD, Choi HJ (2013) Electrorheological and magnetorheological response of polypyrrole/magnetite nanocomposite particles. Colloid Polym Sci 291:1781–1786CrossRef Fang FF, Liu YD, Choi HJ (2013) Electrorheological and magnetorheological response of polypyrrole/magnetite nanocomposite particles. Colloid Polym Sci 291:1781–1786CrossRef
Zurück zum Zitat Goodwin JW, Markham GM, Vincent B (1997) Studies on model electrorheological fluids. J Phys Chem B 101:1961–1967CrossRef Goodwin JW, Markham GM, Vincent B (1997) Studies on model electrorheological fluids. J Phys Chem B 101:1961–1967CrossRef
Zurück zum Zitat Han S, Chi J, Seo YP, Park IJ, Choi HJ, Seo Y (2018) High-performance magnetorheological suspensions of pickering- emulsion-polymerized polystyrene/Fe3O4 particles with enhanced stability. Langmuir 34:2807–2814CrossRef Han S, Chi J, Seo YP, Park IJ, Choi HJ, Seo Y (2018) High-performance magnetorheological suspensions of pickering- emulsion-polymerized polystyrene/Fe3O4 particles with enhanced stability. Langmuir 34:2807–2814CrossRef
Zurück zum Zitat Kim DH, Kim YD (2007) Electrorheological properties of polypyrrole and its composite ER fluids. J Ind Eng Chem 13:879–894 Kim DH, Kim YD (2007) Electrorheological properties of polypyrrole and its composite ER fluids. J Ind Eng Chem 13:879–894
Zurück zum Zitat Kim YD, Park DH (2002) The electrorheological responses of suspensions of polypyrrole-coated polyethylene particles. Colloid Polym Sci 280:828–834CrossRef Kim YD, Park DH (2002) The electrorheological responses of suspensions of polypyrrole-coated polyethylene particles. Colloid Polym Sci 280:828–834CrossRef
Zurück zum Zitat Kim MW, Moon IJ, Choi HJ, Seo Y (2016) Facile fabrication of core/shell structured SiO2/polypyrrole nanoparticles with surface modification and their electrorheology. RSC Adv 6:56495–56502CrossRef Kim MW, Moon IJ, Choi HJ, Seo Y (2016) Facile fabrication of core/shell structured SiO2/polypyrrole nanoparticles with surface modification and their electrorheology. RSC Adv 6:56495–56502CrossRef
Zurück zum Zitat Klingenberg DJ (2007) Mason numbers for magnetorheology. J Rheol 51:883–893CrossRef Klingenberg DJ (2007) Mason numbers for magnetorheology. J Rheol 51:883–893CrossRef
Zurück zum Zitat Klingenberg D, Ulicny JC, Golden MA (2007) A new mason numbers for magnetorheology, proceedings of the 10th international conference on ERMR 2006 (Eds. Gordaninejad F, Graeve OA, Fuchs A, York D ), pp. 94–100 Klingenberg D, Ulicny JC, Golden MA (2007) A new mason numbers for magnetorheology, proceedings of the 10th international conference on ERMR 2006 (Eds. Gordaninejad F, Graeve OA, Fuchs A, York D ), pp. 94–100
Zurück zum Zitat Liu YD, Choi HJ (2009) Comment on “Preparation and electrorheology of new mesoporous polypyrrole/MCM-41 suspensions”. J Mater Sci 44:2999–3001CrossRef Liu YD, Choi HJ (2009) Comment on “Preparation and electrorheology of new mesoporous polypyrrole/MCM-41 suspensions”. J Mater Sci 44:2999–3001CrossRef
Zurück zum Zitat Marshall L, Zukoski CF, Goodwin JW (1989) Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J Chem Soc Faraday Trans 85:2785–2795CrossRef Marshall L, Zukoski CF, Goodwin JW (1989) Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J Chem Soc Faraday Trans 85:2785–2795CrossRef
Zurück zum Zitat McIntyre C, Hengxi Y, Green FP (2013) Electrorheology of suspensions containing interfacially active constituents. ACS Appl Mater Interfa 5:8925–8931CrossRef McIntyre C, Hengxi Y, Green FP (2013) Electrorheology of suspensions containing interfacially active constituents. ACS Appl Mater Interfa 5:8925–8931CrossRef
Zurück zum Zitat Méheust Y, Parmar KPS, Schjelderupsen B, Fossum JO (2011) The electrorheology of suspensions of Na-fluorohectorite clay in silicone oil. J Rheol 55:809–833CrossRef Méheust Y, Parmar KPS, Schjelderupsen B, Fossum JO (2011) The electrorheology of suspensions of Na-fluorohectorite clay in silicone oil. J Rheol 55:809–833CrossRef
Zurück zum Zitat Papanastasiou TC (1987) Flows of Materials with Yield. J Rheol 31:385–404CrossRef Papanastasiou TC (1987) Flows of Materials with Yield. J Rheol 31:385–404CrossRef
Zurück zum Zitat Parathasarathy M, Klingenberg DJ (1996) Electrorheology, mechanisms and models. Mater Sci Eng R 17:57–103CrossRef Parathasarathy M, Klingenberg DJ (1996) Electrorheology, mechanisms and models. Mater Sci Eng R 17:57–103CrossRef
Zurück zum Zitat Parmar KPS, Meheust Y, Schjelderupsen B, Fossum JO (2008) Electrorheological suspensions of laponite in oil: rheometry studies. Langmuir 24:1814–1822CrossRef Parmar KPS, Meheust Y, Schjelderupsen B, Fossum JO (2008) Electrorheological suspensions of laponite in oil: rheometry studies. Langmuir 24:1814–1822CrossRef
Zurück zum Zitat Sedlačík M, Mrlík M, Pavlínek V, Sáha P, Quadrat O (2012) Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles. Colloid Polym Sci. 290:41–48CrossRef Sedlačík M, Mrlík M, Pavlínek V, Sáha P, Quadrat O (2012) Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles. Colloid Polym Sci. 290:41–48CrossRef
Zurück zum Zitat Seo Y (2011) A new yield stress scaling function for electrorheological fluids. J Non-Newtonian Fluid Mechan 166:241–243CrossRef Seo Y (2011) A new yield stress scaling function for electrorheological fluids. J Non-Newtonian Fluid Mechan 166:241–243CrossRef
Zurück zum Zitat Seo YP, Seo Y (2012) Modeling and analysis of electrorheological suspensions in shear flow. Langmuir 28:3077–3084CrossRef Seo YP, Seo Y (2012) Modeling and analysis of electrorheological suspensions in shear flow. Langmuir 28:3077–3084CrossRef
Zurück zum Zitat Seo YP, Choi HJ, Seo Y (2011) Analysis of the flow behavior of electrorheological fluids with the aligned structure reformation. Polymer 52:5695–5698CrossRef Seo YP, Choi HJ, Seo Y (2011) Analysis of the flow behavior of electrorheological fluids with the aligned structure reformation. Polymer 52:5695–5698CrossRef
Zurück zum Zitat Seo YP, Choi HJ, Seo Y (2012) A simplified model for analyzing the flow behavior of electrorheological fluids containing silica nanoparticle-decorated polyaniline nanofibers. Soft Matter 8:4659–4663CrossRef Seo YP, Choi HJ, Seo Y (2012) A simplified model for analyzing the flow behavior of electrorheological fluids containing silica nanoparticle-decorated polyaniline nanofibers. Soft Matter 8:4659–4663CrossRef
Zurück zum Zitat Seo YP, Choi HJ, Seo Y (2014) Modelling and analysis of an electrorheological flow behavior containing semiconducting graphene oxide/polyaniline composite particles. Colloids Surf. A. Physicochem Eng Asp 457:363–367CrossRef Seo YP, Choi HJ, Seo Y (2014) Modelling and analysis of an electrorheological flow behavior containing semiconducting graphene oxide/polyaniline composite particles. Colloids Surf. A. Physicochem Eng Asp 457:363–367CrossRef
Zurück zum Zitat Seo YP, Choi HJ, Seo Y (2015) Yield stress analysis of electrorheological suspensions containing core–shell structured anisotropic poly(methyl methacrylate) microparticles. Polym Adv Tech 26:117–120CrossRef Seo YP, Choi HJ, Seo Y (2015) Yield stress analysis of electrorheological suspensions containing core–shell structured anisotropic poly(methyl methacrylate) microparticles. Polym Adv Tech 26:117–120CrossRef
Zurück zum Zitat Seo YP, Han S, Choi J, Takahara A, Choi HJ, Seo Y (2018) Searching for a stable high-performance magnetorheological suspension. Adv Mater 30:1704769CrossRef Seo YP, Han S, Choi J, Takahara A, Choi HJ, Seo Y (2018) Searching for a stable high-performance magnetorheological suspension. Adv Mater 30:1704769CrossRef
Zurück zum Zitat Wu CW, Conrad H (1996) A modified conduction model for the electrorheological effect. J Phys D Appl Phys 29:3147–3153CrossRef Wu CW, Conrad H (1996) A modified conduction model for the electrorheological effect. J Phys D Appl Phys 29:3147–3153CrossRef
Zurück zum Zitat Yamaguchi H, Zhang XR, Niu XD, Nishioka K (2010) Investigation of impulse of an ER fluid viscous damper. J Intell Mater Syst Struct 21:423–435CrossRef Yamaguchi H, Zhang XR, Niu XD, Nishioka K (2010) Investigation of impulse of an ER fluid viscous damper. J Intell Mater Syst Struct 21:423–435CrossRef
Zurück zum Zitat Zhang M, Gong X, Wen W (2009) Manipulation of microfluidic droplets by electrorheological fluid. Electrophoresis 30:3116–3123CrossRef Zhang M, Gong X, Wen W (2009) Manipulation of microfluidic droplets by electrorheological fluid. Electrophoresis 30:3116–3123CrossRef
Metadaten
Titel
Analysis of the flow behavior of electrorheological fluids containing polypyrrole nanoparticles or polypyrrole/silica nanocomposite particles
verfasst von
Youngwook P. Seo
Sangsok Han
Jihun Kim
Hyoung Jin Choi
Yongsok Seo
Publikationsdatum
07.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Rheologica Acta / Ausgabe 6/2020
Print ISSN: 0035-4511
Elektronische ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-020-01205-9

Weitere Artikel der Ausgabe 6/2020

Rheologica Acta 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.