Skip to main content

2021 | OriginalPaper | Buchkapitel

52. Analysis of Thermal Energy Storage Mediums for Solar Thermal Energy Applications

verfasst von : Shivansh Aggarwal, Rahul Khatri, Shlok Goswami

Erschienen in: Advances in Clean Energy Technologies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy storage mediums are highly popular in solar applications due to their ability to store heat and release it during any time period of the day. This study provides a classification of different thermal energy storage (TES) mediums in various solar energy systems with their feasibility and future applications. The concept of TES and the various studies on the application of TES in solar thermal applications have been presented. Recent advances and the performance of common solar thermal systems with and without TES have also been presented. Working conditions, economical aspects, suitability, and selection criteria of TES materials have also been discussed based on their application. This paper also uncovers the future aspects that possibly will improve the use of TES and lead to the performance optimization of solar thermal systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Conti, C. Charach, Thermodynamics of heat storage in a PCM shell-and-tube heat exchanger in parallel or in series with a heat engine. Solar Energy, 59–68. M. Conti, C. Charach, Thermodynamics of heat storage in a PCM shell-and-tube heat exchanger in parallel or in series with a heat engine. Solar Energy, 59–68.
2.
Zurück zum Zitat T. Kerslake, M. Ibrahim, Analysis of thermal energy storage material with change of phase volumetric effects. ASME J. Solar Energy Eng. 22–31 T. Kerslake, M. Ibrahim, Analysis of thermal energy storage material with change of phase volumetric effects. ASME J. Solar Energy Eng. 22–31
3.
Zurück zum Zitat J. Duffie, W. Beckman, Solar Engineering of Thermal Processes (Wiley, Hoboken, 2013). J. Duffie, W. Beckman, Solar Engineering of Thermal Processes (Wiley, Hoboken, 2013).
4.
Zurück zum Zitat K. Pielichowska, K. Pielichowska, Phase change materials for thermal energy storage. Prog. Mater Sci. 65, 67–123 (2014)CrossRef K. Pielichowska, K. Pielichowska, Phase change materials for thermal energy storage. Prog. Mater Sci. 65, 67–123 (2014)CrossRef
5.
Zurück zum Zitat G. Kokogiannakis, J. Darkwa, W. Su, Review of solid–liquid phase change materials and their encapsulation technologies. Renew. Sustain. Energy Rev. 48, 373–391 (2015)CrossRef G. Kokogiannakis, J. Darkwa, W. Su, Review of solid–liquid phase change materials and their encapsulation technologies. Renew. Sustain. Energy Rev. 48, 373–391 (2015)CrossRef
6.
Zurück zum Zitat K. Sopian, M. Alkilani, S. Mat, Fabrication and experimental investigation of PCM capsules integrated in solar air heater. Am. J. Environ. Sci. 7, 542–546 (2011)CrossRef K. Sopian, M. Alkilani, S. Mat, Fabrication and experimental investigation of PCM capsules integrated in solar air heater. Am. J. Environ. Sci. 7, 542–546 (2011)CrossRef
7.
Zurück zum Zitat S. Enible, Thermal analysis of a natural circulation solar air heater with phase change material energy storage. Renew. Energy 28, 2269–2299 (2003)CrossRef S. Enible, Thermal analysis of a natural circulation solar air heater with phase change material energy storage. Renew. Energy 28, 2269–2299 (2003)CrossRef
8.
Zurück zum Zitat P. Naphon, Effect of porous media on the performance of the double-pass flat plate solar air heater. Int. Com. Heat Mass Transf. 32, 140–150 (2005)CrossRef P. Naphon, Effect of porous media on the performance of the double-pass flat plate solar air heater. Int. Com. Heat Mass Transf. 32, 140–150 (2005)CrossRef
9.
Zurück zum Zitat V. Tygai, A. Pandey, S. Kaushik, S. Tyagi, Thermal performance evaluation of a solar air heater with and without thermal energy storage. J. Therm. Anal. Calorim. 1–8 (2011) V. Tygai, A. Pandey, S. Kaushik, S. Tyagi, Thermal performance evaluation of a solar air heater with and without thermal energy storage. J. Therm. Anal. Calorim. 1–8 (2011)
10.
Zurück zum Zitat W. Aissa, M.E. Sallak, A. Elhakem, An experimental investigation of forced convection flat plate solar air heater with thermal storage material. Therm. Sci. 1105–1116 (2012) W. Aissa, M.E. Sallak, A. Elhakem, An experimental investigation of forced convection flat plate solar air heater with thermal storage material. Therm. Sci. 1105–1116 (2012)
11.
Zurück zum Zitat H. Yadav, A. Saxena, N.K. Sharma, Thermal performance evaluation of a design, and cost optimized solar air heater, in Int Cong Renew Energy (ICORE-2012) Grid Power from Renewables organized by Solar Energy Society of India (SESI), pp. 345–353 (2012) H. Yadav, A. Saxena, N.K. Sharma, Thermal performance evaluation of a design, and cost optimized solar air heater, in Int Cong Renew Energy (ICORE-2012) Grid Power from Renewables organized by Solar Energy Society of India (SESI), pp. 345–353 (2012)
12.
Zurück zum Zitat A. Saxena, N. Agarwal, G. Srivastava, Design and performance of a solar air heater with long term heat storage. Int. J. Heat Mass Transf. 60, 8–16 (2013)CrossRef A. Saxena, N. Agarwal, G. Srivastava, Design and performance of a solar air heater with long term heat storage. Int. J. Heat Mass Transf. 60, 8–16 (2013)CrossRef
13.
Zurück zum Zitat S. Karthikeyan, G. Solomon, V. Kumaresan, R. Velraj, Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications. Energy Convers. Manage. 78, 74–80 (2014)CrossRef S. Karthikeyan, G. Solomon, V. Kumaresan, R. Velraj, Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications. Energy Convers. Manage. 78, 74–80 (2014)CrossRef
14.
Zurück zum Zitat S. Bouadila, S. Kooli, S. Slouri, M. Lazaar, A. Farhat, Improvement of the greenhouse climate using a solar air heater with latent storage energy. Energy 64, 663–672 (2014)CrossRef S. Bouadila, S. Kooli, S. Slouri, M. Lazaar, A. Farhat, Improvement of the greenhouse climate using a solar air heater with latent storage energy. Energy 64, 663–672 (2014)CrossRef
15.
Zurück zum Zitat A. Wadhawan, A.S. Dhoble, V.B. Gawande, Analysis of the effects of use of thermal energy storage device (TESD) in solar air heater. Alexandria Eng. J. 57(3), 1173–1183 (2018)CrossRef A. Wadhawan, A.S. Dhoble, V.B. Gawande, Analysis of the effects of use of thermal energy storage device (TESD) in solar air heater. Alexandria Eng. J. 57(3), 1173–1183 (2018)CrossRef
16.
Zurück zum Zitat A. Hasan, Thermal energy storage system with stearic acid as phase change material. Energy Conserv. Manage. 35(10), 843–856 (1994)CrossRef A. Hasan, Thermal energy storage system with stearic acid as phase change material. Energy Conserv. Manage. 35(10), 843–856 (1994)CrossRef
17.
Zurück zum Zitat A. Hasan, Phase change material energy storage system employing palmitic acid. Sol Energy 35(10), 143–154 (1994)CrossRef A. Hasan, Phase change material energy storage system employing palmitic acid. Sol Energy 35(10), 143–154 (1994)CrossRef
18.
Zurück zum Zitat A. Sayigh, A. Hasan, Some fatty acids as phase change thermal energy storage materials. Renew. Energy 4(1), 69–76 (1994)CrossRef A. Sayigh, A. Hasan, Some fatty acids as phase change thermal energy storage materials. Renew. Energy 4(1), 69–76 (1994)CrossRef
19.
Zurück zum Zitat H. Xue, Experimental investigation of a domestic solar water heater with solar collector coupled phase-change energy storage. Renew. Energy 86, 257–261 (2016)CrossRef H. Xue, Experimental investigation of a domestic solar water heater with solar collector coupled phase-change energy storage. Renew. Energy 86, 257–261 (2016)CrossRef
20.
Zurück zum Zitat S. Canbazoğlu, A. Şahinaslan, A. Ekmekyapar, Ý.G. Aksoy, F. Akarsu, Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system. Energy Build. 37(3) (2005) S. Canbazoğlu, A. Şahinaslan, A. Ekmekyapar, Ý.G. Aksoy, F. Akarsu, Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system. Energy Build. 37(3) (2005)
21.
Zurück zum Zitat d.A. Gracia, E. Oró, M. Farid, L.F. Cabeza, Thermal analysis of including phase change material in a domestic. Appl. Therm. Eng. 3938–3945 (2011) d.A. Gracia, E. Oró, M. Farid, L.F. Cabeza, Thermal analysis of including phase change material in a domestic. Appl. Therm. Eng. 3938–3945 (2011)
22.
Zurück zum Zitat M. Mazman, L. Cabeza, H. Mehling, M. Nogues, H. Evliya, H. Paksoy, Utilization of phase change materials in solar domestic hot water systems. Renew. Energy 34, 1639–1643 (2009)CrossRef M. Mazman, L. Cabeza, H. Mehling, M. Nogues, H. Evliya, H. Paksoy, Utilization of phase change materials in solar domestic hot water systems. Renew. Energy 34, 1639–1643 (2009)CrossRef
23.
Zurück zum Zitat I. Al-Hinti, A. Al-Ghandoor, A. Maaly, I.A. Naqeera, Z. Al-Khateeb, O. Al-Sheikh, Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems. Energy Convers. Manag 51, 1735–1740 (2010)CrossRef I. Al-Hinti, A. Al-Ghandoor, A. Maaly, I.A. Naqeera, Z. Al-Khateeb, O. Al-Sheikh, Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems. Energy Convers. Manag 51, 1735–1740 (2010)CrossRef
24.
Zurück zum Zitat T. Kousksou, P. Bruel, G. Cherreau, V. Leoussoff, T.E. Rhafiki, PCM storage for solar DHW: From an unfulfilled promise to a real benefit. Sol. Energy 85, 2033–2040 (2011)CrossRef T. Kousksou, P. Bruel, G. Cherreau, V. Leoussoff, T.E. Rhafiki, PCM storage for solar DHW: From an unfulfilled promise to a real benefit. Sol. Energy 85, 2033–2040 (2011)CrossRef
25.
Zurück zum Zitat R. Murray, L. Desgrosseilliers, J. Stewart, N. Osbourne, G. Marin, A. Safatli, D. Groulx, M. White, in Design of a latent heat energy storage system coupled with a domestic hot water solar thermal system (2011) R. Murray, L. Desgrosseilliers, J. Stewart, N. Osbourne, G. Marin, A. Safatli, D. Groulx, M. White, in Design of a latent heat energy storage system coupled with a domestic hot water solar thermal system (2011)
26.
Zurück zum Zitat S. Bouadila, M. Fteïti, M. Oueslati, A. Guizani, A. Farhat, Enhancement of latent heat storage in a rectangular cavity: solar water heater case study. Energy Convers. Manage. 78, 904–912 (2014) S. Bouadila, M. Fteïti, M. Oueslati, A. Guizani, A. Farhat, Enhancement of latent heat storage in a rectangular cavity: solar water heater case study. Energy Convers. Manage. 78, 904–912 (2014)
27.
Zurück zum Zitat A. Alemrajabi, M. Fazilati, Phase change material for enhancing solar water heater, an experimental approach. Energy Convers. Manag 71, 138–145 (2013)CrossRef A. Alemrajabi, M. Fazilati, Phase change material for enhancing solar water heater, an experimental approach. Energy Convers. Manag 71, 138–145 (2013)CrossRef
28.
Zurück zum Zitat M. Naghavi, K. Ong, I. Badruddin, M. Mehrali, H. Metselaar, Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes. Energy 127, 101–115 (2017)CrossRef M. Naghavi, K. Ong, I. Badruddin, M. Mehrali, H. Metselaar, Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes. Energy 127, 101–115 (2017)CrossRef
29.
Zurück zum Zitat A. Khalifa, K. Suffer, M. Mahmoud, A storage domestic solar hot water system with a back layer of phase change material. Exp. Therm. Fluid Sci. 44, 174–181 (2013)CrossRef A. Khalifa, K. Suffer, M. Mahmoud, A storage domestic solar hot water system with a back layer of phase change material. Exp. Therm. Fluid Sci. 44, 174–181 (2013)CrossRef
30.
Zurück zum Zitat H. Al-Kayiem, S. Lin, Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations. Sol. Energy. 109, 82–92 (2014)CrossRef H. Al-Kayiem, S. Lin, Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations. Sol. Energy. 109, 82–92 (2014)CrossRef
31.
Zurück zum Zitat A. Papadimitratos, S. Sobhansarbandi, V. Pozdin, A. Zakhidov, F. Hassanipour, Evacuated tube solar collectors integrated with phase change materials. Sol. Energy 129, 10–19 (2016)CrossRef A. Papadimitratos, S. Sobhansarbandi, V. Pozdin, A. Zakhidov, F. Hassanipour, Evacuated tube solar collectors integrated with phase change materials. Sol. Energy 129, 10–19 (2016)CrossRef
32.
Zurück zum Zitat J. Butler, J. Troeger, Drying peanuts using solar energy stored in a rockbed. Agric. Energy Solar Energy 1 (1980) J. Butler, J. Troeger, Drying peanuts using solar energy stored in a rockbed. Agric. Energy Solar Energy 1 (1980)
33.
Zurück zum Zitat M. Ndukwu, D. Onyenwigwe, F. Abam, A. Eke, Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage. Renew. Energy (2020) M. Ndukwu, D. Onyenwigwe, F. Abam, A. Eke, Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage. Renew. Energy (2020)
34.
Zurück zum Zitat Z. Alimohammadi, H.S. Akhijahani, P. Salami, Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods. Sol. Energy 201, 157–177 (2020)CrossRef Z. Alimohammadi, H.S. Akhijahani, P. Salami, Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods. Sol. Energy 201, 157–177 (2020)CrossRef
35.
Zurück zum Zitat A. Reyes, F. Vásquez, A. Mahn, Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Convers. Manage. 83, 241–248 (2014)CrossRef A. Reyes, F. Vásquez, A. Mahn, Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Convers. Manage. 83, 241–248 (2014)CrossRef
36.
Zurück zum Zitat H. Atalay, Performance analysis of a solar dryer integrated with the packed bed. Energy 172, 1037–1052 (2019)CrossRef H. Atalay, Performance analysis of a solar dryer integrated with the packed bed. Energy 172, 1037–1052 (2019)CrossRef
37.
Zurück zum Zitat R. Grewal, H. Manchanda, M. Kumar, A review on applications of phase change materials in solar distillation, in 2nd International Conference on Emerging Trends in Science, Engineering & Technology, Pune (2018). R. Grewal, H. Manchanda, M. Kumar, A review on applications of phase change materials in solar distillation, in 2nd International Conference on Emerging Trends in Science, Engineering & Technology, Pune (2018).
38.
Zurück zum Zitat UCLA, in Phase Change Composite Materials for Energy Efficient Building Envelopes, San Diego. UCLA, in Phase Change Composite Materials for Energy Efficient Building Envelopes, San Diego.
39.
Zurück zum Zitat A. Saxena, S. Lath, T. Vineet, Solar cooking by using PCM as a thermal heat storage. Int. J. Mechan. Eng. 3(2), 91–95 (2013) A. Saxena, S. Lath, T. Vineet, Solar cooking by using PCM as a thermal heat storage. Int. J. Mechan. Eng. 3(2), 91–95 (2013)
40.
Zurück zum Zitat S.E. Jo, M.S. Kim, M.K. Kim, J.Y. Kim, Power generation of a thermoelectric generator with phase change materials. Smart Mater. Struct. 22 (2013). S.E. Jo, M.S. Kim, M.K. Kim, J.Y. Kim, Power generation of a thermoelectric generator with phase change materials. Smart Mater. Struct. 22 (2013).
Metadaten
Titel
Analysis of Thermal Energy Storage Mediums for Solar Thermal Energy Applications
verfasst von
Shivansh Aggarwal
Rahul Khatri
Shlok Goswami
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-0235-1_52