Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2020

12.02.2020 | ORIGINAL ARTICLE

Analytical modeling of part distortion in metal additive manufacturing

verfasst von: Jinqiang Ning, Maxwell Praniewicz, Wenjia Wang, James R. Dobbs, Steven Y. Liang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents an analytical modeling methodology for the prediction of part distortion in powder bed metal additive manufacturing (PBMAM). The presented model consists of analytical thermal modeling, thermal stress modeling, residual stress modeling, and distortion modeling. It has promising short computational efficiency without resorting to finite element analysis or any iteration-based simulations. The temperature profile is calculated using a moving point heat source solution and heat sink solution with consideration of heat input from a moving laser and heat loss from boundary heat transfer. The thermal stress is calculated from the temperature calculation using a thermal stress model considering thermal load, surface tension, and hydrostatic pressure. The residual stress is calculated from the thermal stress calculation using an elastoplastic relaxation procedure. The residual stress–induced part distortion is finally calculated from the calculated residual stress and residual strain using a surface displacement model. The calculated part distortion was validated to experimental measurement on a twin-cantilever part produced by PBMAM of Ti6Al4V. Close agreements were observed. The computational time was recorded less than 10 s. The high predictive accuracy and high computational efficiency allow the process parameter planning for distortion control and elimination through inverse analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef
2.
Zurück zum Zitat Mani M, Lane BM, Donmez MA, Feng SC, Moylan SP (2017) A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes. Int J Prod Res 55(5):1400–1418CrossRef Mani M, Lane BM, Donmez MA, Feng SC, Moylan SP (2017) A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes. Int J Prod Res 55(5):1400–1418CrossRef
3.
Zurück zum Zitat Biegler M, Graf B, Rethmeier M (2018) In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations. Addit Manuf 20:101–110 Biegler M, Graf B, Rethmeier M (2018) In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations. Addit Manuf 20:101–110
4.
Zurück zum Zitat Heigel JC, Michaleris P, Palmer TA (2015) In situ monitoring and characterization of distortion during laser cladding of Inconel® 625. J Mater Process Technol 220:135–145CrossRef Heigel JC, Michaleris P, Palmer TA (2015) In situ monitoring and characterization of distortion during laser cladding of Inconel® 625. J Mater Process Technol 220:135–145CrossRef
5.
Zurück zum Zitat Dunbar AJ, Denlinger ER, Gouge MF, Michaleris P (2016) Experimental validation of finite element modeling for laser powder bed fusion deformation. Addit Manuf 12:108–120CrossRef Dunbar AJ, Denlinger ER, Gouge MF, Michaleris P (2016) Experimental validation of finite element modeling for laser powder bed fusion deformation. Addit Manuf 12:108–120CrossRef
6.
Zurück zum Zitat Afazov S, Denmark WA, Toralles BL, Holloway A, Yaghi A (2017) Distortion prediction and compensation in selective laser melting. Addit Manuf 17:15–22 Afazov S, Denmark WA, Toralles BL, Holloway A, Yaghi A (2017) Distortion prediction and compensation in selective laser melting. Addit Manuf 17:15–22
7.
Zurück zum Zitat Denlinger ER, Michaleris P (2016) Effect of stress relaxation on distortion in additive manufacturing process modeling. Addit Manuf 12:51–59CrossRef Denlinger ER, Michaleris P (2016) Effect of stress relaxation on distortion in additive manufacturing process modeling. Addit Manuf 12:51–59CrossRef
8.
Zurück zum Zitat Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Prod Eng 4(1):35–45CrossRef Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Prod Eng 4(1):35–45CrossRef
9.
Zurück zum Zitat Li C, Fu CH, Guo YB, Fang FZ (2016) A multiscale modeling approach for fast prediction of part distortion in selective laser melting. J Mater Process Technol 229:703–712CrossRef Li C, Fu CH, Guo YB, Fang FZ (2016) A multiscale modeling approach for fast prediction of part distortion in selective laser melting. J Mater Process Technol 229:703–712CrossRef
10.
Zurück zum Zitat Li C, Guo Y, Fang X, Fang F (2018) A scalable predictive model and validation for residual stress and distortion in selective laser melting. CIRP Ann 67(1):249–252CrossRef Li C, Guo Y, Fang X, Fang F (2018) A scalable predictive model and validation for residual stress and distortion in selective laser melting. CIRP Ann 67(1):249–252CrossRef
11.
Zurück zum Zitat Paul R, Anand S, Gerner F (2014) Effect of thermal deformation on part errors in metal powder based additive manufacturing processes. J Manuf Sci Eng 136(3):031009CrossRef Paul R, Anand S, Gerner F (2014) Effect of thermal deformation on part errors in metal powder based additive manufacturing processes. J Manuf Sci Eng 136(3):031009CrossRef
12.
Zurück zum Zitat Ning J, Nguyen V, Liang SY (2019) Analytical modeling of machining forces of ultra-fine-grained titanium. Int J Adv Manuf Technol 101(1–4):627–636CrossRef Ning J, Nguyen V, Liang SY (2019) Analytical modeling of machining forces of ultra-fine-grained titanium. Int J Adv Manuf Technol 101(1–4):627–636CrossRef
13.
Zurück zum Zitat Ning J, Nguyen V, Huang Y, Hartwig KT, Liang SY (2019) Constitutive modeling of ultra-fine-grained titanium flow stress for machining temperature prediction. Bio-Des Manuf 2:153–160CrossRef Ning J, Nguyen V, Huang Y, Hartwig KT, Liang SY (2019) Constitutive modeling of ultra-fine-grained titanium flow stress for machining temperature prediction. Bio-Des Manuf 2:153–160CrossRef
14.
Zurück zum Zitat Li F, Ning J, Liang SY (2019) Analytical modeling of the temperature using uniform moving heat source in planar induction heating process. Appl Sci 9(7):1445CrossRef Li F, Ning J, Liang SY (2019) Analytical modeling of the temperature using uniform moving heat source in planar induction heating process. Appl Sci 9(7):1445CrossRef
15.
Zurück zum Zitat Van Elsen M, Baelmans M, Mercelis P, Kruth JP (2007) Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing. Int J Heat Mass Transf 50(23–24):4872–4882CrossRef Van Elsen M, Baelmans M, Mercelis P, Kruth JP (2007) Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing. Int J Heat Mass Transf 50(23–24):4872–4882CrossRef
16.
Zurück zum Zitat Ning J, Sievers DE, Garmestani H, Liang SY (2019) Analytical modeling of in-process temperature in powder bed additive manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials 12(5):808CrossRef Ning J, Sievers DE, Garmestani H, Liang SY (2019) Analytical modeling of in-process temperature in powder bed additive manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials 12(5):808CrossRef
17.
Zurück zum Zitat Ning J, Sievers DE, Garmestani H, Liang SY (2019) Analytical thermal modeling of metal additive manufacturing by heat sink solution. Materials 12(16):2568CrossRef Ning J, Sievers DE, Garmestani H, Liang SY (2019) Analytical thermal modeling of metal additive manufacturing by heat sink solution. Materials 12(16):2568CrossRef
18.
Zurück zum Zitat Ning J, Mirkoohi E, Dong Y, Sievers DE, Garmestani H, Liang SY (2019) Analytical modeling of 3D temperature distribution in selective laser melting of Ti-6Al-4V considering part boundary conditions. J Manuf Process 44:319–326CrossRef Ning J, Mirkoohi E, Dong Y, Sievers DE, Garmestani H, Liang SY (2019) Analytical modeling of 3D temperature distribution in selective laser melting of Ti-6Al-4V considering part boundary conditions. J Manuf Process 44:319–326CrossRef
19.
Zurück zum Zitat Ning J, Sievers DE, Garmestani H, Liang SY (2019) Analytical modeling of transient temperature in powder feed metal additive manufacturing during heating and cooling stages. Appl Phys A 125(8):496CrossRef Ning J, Sievers DE, Garmestani H, Liang SY (2019) Analytical modeling of transient temperature in powder feed metal additive manufacturing during heating and cooling stages. Appl Phys A 125(8):496CrossRef
20.
Zurück zum Zitat Ning J, Sievers DE, Garmestani H, Liang SY (2019) Analytical modeling of in-process temperature in powder feed metal additive manufacturing considering heat transfer boundary condition. Int J Precis Eng Manuf-Green Technol 1–9 Ning J, Sievers DE, Garmestani H, Liang SY (2019) Analytical modeling of in-process temperature in powder feed metal additive manufacturing considering heat transfer boundary condition. Int J Precis Eng Manuf-Green Technol 1–9
21.
Zurück zum Zitat Ning J, Wang W, Zamorano B, Liang SY (2019) Analytical modeling of lack-of-fusion porosity in metal additive manufacturing. Appl Phys A 125(11):797CrossRef Ning J, Wang W, Zamorano B, Liang SY (2019) Analytical modeling of lack-of-fusion porosity in metal additive manufacturing. Appl Phys A 125(11):797CrossRef
22.
Zurück zum Zitat Ning J, Sievers DE, Garmestani H, Liang SY (2020) Analytical modeling of part porosity in metal additive manufacturing. Int J Mech Sci 105428 Ning J, Sievers DE, Garmestani H, Liang SY (2020) Analytical modeling of part porosity in metal additive manufacturing. Int J Mech Sci 105428
23.
Zurück zum Zitat Fergani O, Berto F, Welo T, Liang SY (2017) Analytical modelling of residual stress in additive manufacturing. Fatigue Fract Eng Mater Struct 40(6):971–978CrossRef Fergani O, Berto F, Welo T, Liang SY (2017) Analytical modelling of residual stress in additive manufacturing. Fatigue Fract Eng Mater Struct 40(6):971–978CrossRef
24.
Zurück zum Zitat Ning J, Sievers DE, Garmestani H, Liang SY (2020) Analytical modeling of in-situ deformation of part and substrate in laser cladding additive manufacturing of Inconel 625. J Manuf Process 49:135–140CrossRef Ning J, Sievers DE, Garmestani H, Liang SY (2020) Analytical modeling of in-situ deformation of part and substrate in laser cladding additive manufacturing of Inconel 625. J Manuf Process 49:135–140CrossRef
25.
Zurück zum Zitat Sadik S, Yavari A (2017) Geometric nonlinear thermoelasticity and the time evolution of thermal stresses. Math Mech Solids 22(7):1546–1587MathSciNetCrossRef Sadik S, Yavari A (2017) Geometric nonlinear thermoelasticity and the time evolution of thermal stresses. Math Mech Solids 22(7):1546–1587MathSciNetCrossRef
26.
Zurück zum Zitat Saif MTA, Hui CY, Zehnder AT (1993) Interface shear stresses induced by non-uniform heating of a film on a substrate. Thin Solid Films 224(2):159–167CrossRef Saif MTA, Hui CY, Zehnder AT (1993) Interface shear stresses induced by non-uniform heating of a film on a substrate. Thin Solid Films 224(2):159–167CrossRef
27.
Zurück zum Zitat McDowell DL (1997) An approximate algorithm for elastic-plastic two-dimensional rolling/sliding contact. Wear 211(2):237–246CrossRef McDowell DL (1997) An approximate algorithm for elastic-plastic two-dimensional rolling/sliding contact. Wear 211(2):237–246CrossRef
28.
Zurück zum Zitat Love AEH (1952) A treatise on the mathematical theory of elasticity. Cambridge university press Love AEH (1952) A treatise on the mathematical theory of elasticity. Cambridge university press
29.
Zurück zum Zitat Roberts IA, Wang CJ, Esterlein R, Stanford M, Mynors DJ (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49(12–13):916–923CrossRef Roberts IA, Wang CJ, Esterlein R, Stanford M, Mynors DJ (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49(12–13):916–923CrossRef
30.
Zurück zum Zitat Yang Y, Knol MF, Van Keulen F, Ayas C (2018) A semi-analytical thermal modelling approach for selective laser melting. Addit Manuf 21:284–297CrossRef Yang Y, Knol MF, Van Keulen F, Ayas C (2018) A semi-analytical thermal modelling approach for selective laser melting. Addit Manuf 21:284–297CrossRef
31.
Zurück zum Zitat Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit Manuf 5:9–19CrossRef Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit Manuf 5:9–19CrossRef
32.
Zurück zum Zitat Yadroitsev I, Yadroitsava I (2015) Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys Prototyp 10(2):67–76CrossRef Yadroitsev I, Yadroitsava I (2015) Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys Prototyp 10(2):67–76CrossRef
33.
Zurück zum Zitat Ning J, Liang SY (2018) Model-driven determination of Johnson-cook material constants using temperature and force measurements. Int J Adv Manuf Technol 97(1–4):1053–1060CrossRef Ning J, Liang SY (2018) Model-driven determination of Johnson-cook material constants using temperature and force measurements. Int J Adv Manuf Technol 97(1–4):1053–1060CrossRef
34.
Zurück zum Zitat Ning J, Liang SY (2019) Inverse identification of Johnson-cook material constants based on modified chip formation model and iterative gradient search using temperature and force measurements. Int J Adv Manuf Technol 102(9–12):2865–2876CrossRef Ning J, Liang SY (2019) Inverse identification of Johnson-cook material constants based on modified chip formation model and iterative gradient search using temperature and force measurements. Int J Adv Manuf Technol 102(9–12):2865–2876CrossRef
Metadaten
Titel
Analytical modeling of part distortion in metal additive manufacturing
verfasst von
Jinqiang Ning
Maxwell Praniewicz
Wenjia Wang
James R. Dobbs
Steven Y. Liang
Publikationsdatum
12.02.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05065-8

Weitere Artikel der Ausgabe 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.