Skip to main content

2020 | OriginalPaper | Buchkapitel

Analytical Modelling for Laser Heating for Materials Processing and Surface Engineering

verfasst von : Jaideep Dutta, Balaram Kundu, Hargovind Soni, Peter Madindwa Mashinini

Erschienen in: Surface Engineering of Modern Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Light amplification by stimulated emission of radiation (laser) is an organized monochromatic electromagnetic radiation beam which can proliferate linearly with negligible disparity and the source of energy is found in broad spectrum of wavelength. Laser has been witnessed as ample applications in thermal processing right from material processing to thermal therapy for cancer treatment. The laser processing of materials can be classified as: laser assisted machining, forming, joining and surface engineering. The emitted energy source from laser can be spotlighted into a small spot and it caters a large amount of intense energy which is quintessential for penetration in materials for surface treatment. In this book chapter, exact analytical solution of three-dimensional dual-phase-lag heat conduction model has been developed under the influence of non-Gaussian time and space dependent laser heat source. The corresponding mathematical solution is obtained with implementation of ‘Finite integral transform’ and ‘Duhamel’s theorem’. The consequence of lagging behaviour on laser heating has been studied. The laser heating process variables such as laser exposure, power density have been investigated with temperature variation. The development of surface thermal contours defines the heat flow in the substrate domain. The accuracy of present mathematical modelling has been justified based on the physical phenomena observed under laser heating.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bäuerle, D.: Laser Processing and Chemistry. Springer, Berlin (2000)CrossRef Bäuerle, D.: Laser Processing and Chemistry. Springer, Berlin (2000)CrossRef
2.
Zurück zum Zitat Schaff, P.: Laser Processing of Materials: Fundamentals, Applications and Developments. Springer, Berlin, Heidelberg (2010)CrossRef Schaff, P.: Laser Processing of Materials: Fundamentals, Applications and Developments. Springer, Berlin, Heidelberg (2010)CrossRef
3.
Zurück zum Zitat Dowden, J.M.: The Mathematics of Thermal Modelling: An Introduction to the Theory of Laser Material Processing. Chapman & Hall/CRC (2001) Dowden, J.M.: The Mathematics of Thermal Modelling: An Introduction to the Theory of Laser Material Processing. Chapman & Hall/CRC (2001)
4.
Zurück zum Zitat Yilbas, B.: Laser Heating Applications: Analytical Modelling. Elsevier (2012) Yilbas, B.: Laser Heating Applications: Analytical Modelling. Elsevier (2012)
5.
Zurück zum Zitat Heller, J., Bartha, J.W., Poon, C.C., Tam, A.C.: Temperature dependence of the reflectivity of silicon with surface oxide at wavelengths of 633 and 1047 nm. Appl. Phys. Lett. 75(1), 41–43 (1999)CrossRef Heller, J., Bartha, J.W., Poon, C.C., Tam, A.C.: Temperature dependence of the reflectivity of silicon with surface oxide at wavelengths of 633 and 1047 nm. Appl. Phys. Lett. 75(1), 41–43 (1999)CrossRef
6.
Zurück zum Zitat Brown, M.S., Arnold, C.B.: Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification. Springer, Berlin, Heidelberg (2000) Brown, M.S., Arnold, C.B.: Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification. Springer, Berlin, Heidelberg (2000)
7.
Zurück zum Zitat Yilbas, B.S., Al-Dweik, A.Y., Al-Aqeeli, N., Al-Qahtani, H.M.: Laser Pulse Heating of Surfaces and Thermal Stress Analysis. Springer International Publishing, Switzerland (2014)CrossRef Yilbas, B.S., Al-Dweik, A.Y., Al-Aqeeli, N., Al-Qahtani, H.M.: Laser Pulse Heating of Surfaces and Thermal Stress Analysis. Springer International Publishing, Switzerland (2014)CrossRef
8.
Zurück zum Zitat Maiman, T.H.: Stimulated optical radiation in ruby. Nature 187(4736), 493–499 (1960)CrossRef Maiman, T.H.: Stimulated optical radiation in ruby. Nature 187(4736), 493–499 (1960)CrossRef
9.
Zurück zum Zitat Fourier, J.: The Analytical Theory of Heat. Cambridge University Press, Cambridge Warehouse, London (1878) Fourier, J.: The Analytical Theory of Heat. Cambridge University Press, Cambridge Warehouse, London (1878)
10.
Zurück zum Zitat Arpaci, V.S.: Conduction Heat Transfer. Addison-Wesley Pub. Co., the University of Michigan, Addisson Wesley Pub (1966) Arpaci, V.S.: Conduction Heat Transfer. Addison-Wesley Pub. Co., the University of Michigan, Addisson Wesley Pub (1966)
11.
Zurück zum Zitat Qiu, T.Q., Tien, L.: Femtosecond laser heating of multi-layer metals—I analysis. Int. J. Heat Mass Transf. 37, 2789–2797 (1994)CrossRef Qiu, T.Q., Tien, L.: Femtosecond laser heating of multi-layer metals—I analysis. Int. J. Heat Mass Transf. 37, 2789–2797 (1994)CrossRef
12.
Zurück zum Zitat Yilbas, B.S., Apalak, K.: The basic concepts of heat transfer mechanism during laser drilling of metals. Egypt J. Phys. 18(1), 25–34 (1987) Yilbas, B.S., Apalak, K.: The basic concepts of heat transfer mechanism during laser drilling of metals. Egypt J. Phys. 18(1), 25–34 (1987)
13.
Zurück zum Zitat Yilbas, B.S., Kalyon, M.: Formulation of laser pulse heating: a closed form solution including heating and cooling cycles with pulse parameter variation. Laser Eng. 14(3–4), 213–228 (2004) Yilbas, B.S., Kalyon, M.: Formulation of laser pulse heating: a closed form solution including heating and cooling cycles with pulse parameter variation. Laser Eng. 14(3–4), 213–228 (2004)
14.
Zurück zum Zitat Yilbas, B.S.: Analytical solution for time unsteady laser pulse heating of semi-infinite solid. Int. J. Mech. Sci. 39(6), 671–672 (1997)CrossRef Yilbas, B.S.: Analytical solution for time unsteady laser pulse heating of semi-infinite solid. Int. J. Mech. Sci. 39(6), 671–672 (1997)CrossRef
15.
Zurück zum Zitat Yilbas, B.S.: 3-Dimensional laser heating model including a moving heat source consideration and phase change process. Heat Mass Transf. 33, 495–505 (1998)CrossRef Yilbas, B.S.: 3-Dimensional laser heating model including a moving heat source consideration and phase change process. Heat Mass Transf. 33, 495–505 (1998)CrossRef
16.
Zurück zum Zitat Yilbas, B.S., Kalyon, M.: Analytical solution for pulsed laser heating process: convective boundary condition case. Int. J. Heat Mass Transf. 45, 1571–1582 (2002)CrossRef Yilbas, B.S., Kalyon, M.: Analytical solution for pulsed laser heating process: convective boundary condition case. Int. J. Heat Mass Transf. 45, 1571–1582 (2002)CrossRef
17.
Zurück zum Zitat Yilbas, B.S., Pakdemirli, M., Mansoor, S.B.: Analytical solution for temperature field in thin film initially heated by a short-pulse laser source. Heat Mass Transf. 41, 1077–1084 (2005)CrossRef Yilbas, B.S., Pakdemirli, M., Mansoor, S.B.: Analytical solution for temperature field in thin film initially heated by a short-pulse laser source. Heat Mass Transf. 41, 1077–1084 (2005)CrossRef
18.
Zurück zum Zitat Kalyon, M., Yilbas, B.S.: An approach for analytical solution pertinent to lattice temperature variation due to laser short-pulse heating. Heat Mass Transf. 42, 1111–1117 (2006)CrossRef Kalyon, M., Yilbas, B.S.: An approach for analytical solution pertinent to lattice temperature variation due to laser short-pulse heating. Heat Mass Transf. 42, 1111–1117 (2006)CrossRef
19.
Zurück zum Zitat Hsiao, F.B., Jen, C.P., Wang, D.B., Chuang, C.H., Lee, Y.C., Liu, C.P., Hsu, H.J.: An analytical modeling of heat transfer for laser-assisted nanoimprinting processes. Comput. Mech. 37, 173–181 (2006)CrossRef Hsiao, F.B., Jen, C.P., Wang, D.B., Chuang, C.H., Lee, Y.C., Liu, C.P., Hsu, H.J.: An analytical modeling of heat transfer for laser-assisted nanoimprinting processes. Comput. Mech. 37, 173–181 (2006)CrossRef
20.
Zurück zum Zitat Bouaziz, M.N., Boutalbi, N.: Laser heating of a material with time-dependent laser source. Int. J. Thermophys. 32, 1047–1059 (2011)CrossRef Bouaziz, M.N., Boutalbi, N.: Laser heating of a material with time-dependent laser source. Int. J. Thermophys. 32, 1047–1059 (2011)CrossRef
21.
Zurück zum Zitat Yilbas, B.S., Al-Dweik, A.Y., Mansour, S.B.: Analytical solution of hyperbolic heat conduction equation in relation to laser short-pulse heating. Phys. B 406, 1550–1555 (2011)CrossRef Yilbas, B.S., Al-Dweik, A.Y., Mansour, S.B.: Analytical solution of hyperbolic heat conduction equation in relation to laser short-pulse heating. Phys. B 406, 1550–1555 (2011)CrossRef
22.
Zurück zum Zitat Yilbas, B.S., Al-Dweik, A.Y.: Short-pulse heating and analytical solution to non equilibrium heating process. Phys. B 417, 28–32 (2013)CrossRef Yilbas, B.S., Al-Dweik, A.Y.: Short-pulse heating and analytical solution to non equilibrium heating process. Phys. B 417, 28–32 (2013)CrossRef
23.
Zurück zum Zitat Qi, H.T., Xu, H.Y., Guo, X.W.: The Cattaneo-type time fractional heat conduction equation for laser heating. Comput. Math. Appl. 66, 824–831 (2013)CrossRef Qi, H.T., Xu, H.Y., Guo, X.W.: The Cattaneo-type time fractional heat conduction equation for laser heating. Comput. Math. Appl. 66, 824–831 (2013)CrossRef
24.
Zurück zum Zitat Zhang, L., Shang, X.: Analytical solution to non-Fourier heat conduction as a laser beam irradiating on local surface of a semi-infinite medium. Int. J. Heat Mass Transf. 85, 772–780 (2015)CrossRef Zhang, L., Shang, X.: Analytical solution to non-Fourier heat conduction as a laser beam irradiating on local surface of a semi-infinite medium. Int. J. Heat Mass Transf. 85, 772–780 (2015)CrossRef
25.
Zurück zum Zitat Peng, Q.: An analytical solution for a transient temperature field during laser heating a finite slab. Appl. Math. Model. 40, 4129–4135 (2016)CrossRef Peng, Q.: An analytical solution for a transient temperature field during laser heating a finite slab. Appl. Math. Model. 40, 4129–4135 (2016)CrossRef
26.
Zurück zum Zitat Chen, G., Wang, Y., Zhang, J., Bi, J.: An analytical solution for two-dimensional modeling of repetitive long pulse laser heating material. Int. J. Heat Mass Transf. 104, 503–509 (2017)CrossRef Chen, G., Wang, Y., Zhang, J., Bi, J.: An analytical solution for two-dimensional modeling of repetitive long pulse laser heating material. Int. J. Heat Mass Transf. 104, 503–509 (2017)CrossRef
27.
Zurück zum Zitat Kashani, M.M., Movahhedy, M.R., Ahmadian, M.T.: Analytical solution of transient three-dimensional temperature field in a rotating cylinder subject to a localized laser beam. J Heat Transf. 139, 062701–1–062701–8 (2017)CrossRef Kashani, M.M., Movahhedy, M.R., Ahmadian, M.T.: Analytical solution of transient three-dimensional temperature field in a rotating cylinder subject to a localized laser beam. J Heat Transf. 139, 062701–1–062701–8 (2017)CrossRef
28.
Zurück zum Zitat Chen, G.: Semi-analytical solutions for 2-D modeling of long pulsed laser heating metals with temperature dependent surface absorption. Optik 132, 46–51 (2017)CrossRef Chen, G.: Semi-analytical solutions for 2-D modeling of long pulsed laser heating metals with temperature dependent surface absorption. Optik 132, 46–51 (2017)CrossRef
29.
Zurück zum Zitat Chen, G., Bi, J.: Analytical solutions for three-dimensional modeling of temperature rise inside solid material induced by laser irradiation. Optik 132, 80–88 (2017)CrossRef Chen, G., Bi, J.: Analytical solutions for three-dimensional modeling of temperature rise inside solid material induced by laser irradiation. Optik 132, 80–88 (2017)CrossRef
30.
Zurück zum Zitat Chen, G.: Axisymmetric modeling of long pulsed laser heating with convective boundary conditions using analytical solutions. Optik 130, 1038–1044 (2017)CrossRef Chen, G.: Axisymmetric modeling of long pulsed laser heating with convective boundary conditions using analytical solutions. Optik 130, 1038–1044 (2017)CrossRef
31.
Zurück zum Zitat Feng, S., Huang, C., Wang, J., Zhu, H., Yao, P., Liu, Z.: An analytical model for the prediction of temperature distribution and evolution in hybrid laser-waterjet micro-machining. Prec. Eng. 47, 33–45 (2017)CrossRef Feng, S., Huang, C., Wang, J., Zhu, H., Yao, P., Liu, Z.: An analytical model for the prediction of temperature distribution and evolution in hybrid laser-waterjet micro-machining. Prec. Eng. 47, 33–45 (2017)CrossRef
32.
Zurück zum Zitat Ma, J., Sun, Y., Yang, J.: Analytical solution of dual-phase-lag heat conduction in a finite medium subjected to a moving heat source. Int. J. Therm. Sci. 125, 34–43 (2018)CrossRef Ma, J., Sun, Y., Yang, J.: Analytical solution of dual-phase-lag heat conduction in a finite medium subjected to a moving heat source. Int. J. Therm. Sci. 125, 34–43 (2018)CrossRef
33.
Zurück zum Zitat Dutta, J., Kundu, B.: Two-dimensional closed-form model for temperature in living tissues for hyperthermia treatments. J. Therm. Biol. 71, 41–51 (2018)CrossRef Dutta, J., Kundu, B.: Two-dimensional closed-form model for temperature in living tissues for hyperthermia treatments. J. Therm. Biol. 71, 41–51 (2018)CrossRef
34.
Zurück zum Zitat Dutta, J., Kundu, B.: A revised approach for an exact analytical solution for thermal response in biological tissues significant in therapeutic treatments. J. Therm. Biol. 66, 33–48 (2017)CrossRef Dutta, J., Kundu, B.: A revised approach for an exact analytical solution for thermal response in biological tissues significant in therapeutic treatments. J. Therm. Biol. 66, 33–48 (2017)CrossRef
35.
Zurück zum Zitat Xu, F., Seffen, K.A., Liu, T.J.: Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf. 51, 2237–2259 (2008)CrossRef Xu, F., Seffen, K.A., Liu, T.J.: Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf. 51, 2237–2259 (2008)CrossRef
36.
Zurück zum Zitat Cattaneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte. Rendus 247, 431–433 (1958) Cattaneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte. Rendus 247, 431–433 (1958)
37.
Zurück zum Zitat Vernotte, P.: Les paradoxes de la theorie continue de l’ equation de la chaleur. Compte. Rendus 246, 3154–3155 (1958) Vernotte, P.: Les paradoxes de la theorie continue de l’ equation de la chaleur. Compte. Rendus 246, 3154–3155 (1958)
38.
Zurück zum Zitat Tzou, D.Y.: A unified field approach for heat conduction from macro- to microscales. J Heat Transf. 117, 8–16 (1995)CrossRef Tzou, D.Y.: A unified field approach for heat conduction from macro- to microscales. J Heat Transf. 117, 8–16 (1995)CrossRef
39.
Zurück zum Zitat Hooshmand, P., Moradi, A., Khezry, B.: Bioheat transfer analysis of biological tissues induced by laser irradiation. Int. J. Therm. Sci. 90, 214–223 (2015)CrossRef Hooshmand, P., Moradi, A., Khezry, B.: Bioheat transfer analysis of biological tissues induced by laser irradiation. Int. J. Therm. Sci. 90, 214–223 (2015)CrossRef
40.
Zurück zum Zitat Zhou, J., Zhang, Y., Chen, J.K.: An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues. Int. J. Therm. Sci. 48(8), 1477–1485 (2009)CrossRef Zhou, J., Zhang, Y., Chen, J.K.: An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues. Int. J. Therm. Sci. 48(8), 1477–1485 (2009)CrossRef
41.
Zurück zum Zitat Ma, J., Yang, X., Sun, Y., Yang, J.: Thermal damage in three-dimensional vivo bio-tissues induced by moving heat sources in laser therapy. Sci. Rep. (Nature) 9, 10987 (2019)CrossRef Ma, J., Yang, X., Sun, Y., Yang, J.: Thermal damage in three-dimensional vivo bio-tissues induced by moving heat sources in laser therapy. Sci. Rep. (Nature) 9, 10987 (2019)CrossRef
42.
Zurück zum Zitat Tzou, D.Y.: Macro- To Micro-Scale Heat Transfer: The Lagging Behavior (Chemical and Mechanical Engineering Series). CRC Press (1996) Tzou, D.Y.: Macro- To Micro-Scale Heat Transfer: The Lagging Behavior (Chemical and Mechanical Engineering Series). CRC Press (1996)
43.
Zurück zum Zitat Ozisik, M.N.: Heat conduction. Wiley, Canada (1976) Ozisik, M.N.: Heat conduction. Wiley, Canada (1976)
44.
45.
Zurück zum Zitat Dutta, J., Kundu, B.: Exact analysis based on BDLTNE approach for thermal behaviour in living tissues during regional hyperthermia therapy. Act. Mech. 230, 2853–2871 (2019)CrossRef Dutta, J., Kundu, B.: Exact analysis based on BDLTNE approach for thermal behaviour in living tissues during regional hyperthermia therapy. Act. Mech. 230, 2853–2871 (2019)CrossRef
Metadaten
Titel
Analytical Modelling for Laser Heating for Materials Processing and Surface Engineering
verfasst von
Jaideep Dutta
Balaram Kundu
Hargovind Soni
Peter Madindwa Mashinini
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-43232-4_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.