Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

Friction Stir Processing: An Emerging Surface Engineering Technique

verfasst von : Padmakumar A. Bajakke, Sudhakar C. Jambagi, Vinayak R. Malik, Anand S. Deshpande

Erschienen in: Surface Engineering of Modern Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface modification technologies impart improved surface properties without affecting the bulk properties of the material. The properties could be mechanical, electrical or thermal properties. Until recent past, thermal spray techniques, namely, plasma spraying, high-velocity oxy-fuel coatings and many others widely used for these applications. Friction stir processing (FSP) is a relatively newer technique that uses friction (between two surfaces) as a heat source to form a surface composite on the base alloy. This solid-state process not only refines the given structure but also disperses the reinforcements well within matrix alloy to enhance the surface properties. FSP was earlier employed to low melting point alloys such as aluminum and magnesium-base alloys, but now, with the recent development in tool geometry and tool materials, it can even be effectively used for high melting point alloys like steel and titanium-based alloys. Several process parameters seem to affect temperature and dispersion of reinforcements at the surface. They include rotational speed and traverse speed of the tool, number of passes, cooling medium and the tool geometry. Among these, rotation speed and traversing speed of tool seem to greatly affect the temperature distribution in the plasticized zone formed at the surface. This temperature, in turn, affects the grain refinement and dispersion of reinforcement particles. The present chapter summarizes the effect of these parameters. This chapter also reviews the latest developments in the tool material and its design. Further, their role in augmenting the base alloy properties is also discussed. High hardness, high fracture toughness, chemical inertness and high-temperature strength are few desirable properties of a tool to be used for FSP. In the end, the applicability of FSP as a surface modification technique has been assessed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ASM Handbook Volume 5: Surface Engineering. ASM International (1994) ASM Handbook Volume 5: Surface Engineering. ASM International (1994)
2.
Zurück zum Zitat Jambagi, S.C.: Property Improvement of Thermally Sprayed Coatings Using Carbon Nanotube Reinforcement. Indian Institute of Technology, Kharagpur (2017) Jambagi, S.C.: Property Improvement of Thermally Sprayed Coatings Using Carbon Nanotube Reinforcement. Indian Institute of Technology, Kharagpur (2017)
3.
Zurück zum Zitat Jambagi, S.C.: Scratch adhesion strength of plasma sprayed carbon nanotube reinforced ceramic coatings. J. Alloys Compd. 728, 126–137 (2017)CrossRef Jambagi, S.C.: Scratch adhesion strength of plasma sprayed carbon nanotube reinforced ceramic coatings. J. Alloys Compd. 728, 126–137 (2017)CrossRef
4.
Zurück zum Zitat Jambagi, S.C., Kar, S., Brodard, P., Bandyopadhyay, P.P.: Characteristics of plasma sprayed coatings produced from carbon nanotube doped ceramic powder feedstock. Mater. Des. 112, 392–401 (2016)CrossRef Jambagi, S.C., Kar, S., Brodard, P., Bandyopadhyay, P.P.: Characteristics of plasma sprayed coatings produced from carbon nanotube doped ceramic powder feedstock. Mater. Des. 112, 392–401 (2016)CrossRef
5.
Zurück zum Zitat Majumdar, J.D.: thermal and cold spraying technology in manufacturing. In: Handbook of Manufacturing Engineering and Technology, pp. 2805–2850. Springer, London (2014) Majumdar, J.D.: thermal and cold spraying technology in manufacturing. In: Handbook of Manufacturing Engineering and Technology, pp. 2805–2850. Springer, London (2014)
6.
Zurück zum Zitat Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I.: Industrial applications of thermal spraying technology. In: Thermal Spray Fundamentals: From Powder to Part, pp. 1401–1566. Springer (2014) Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I.: Industrial applications of thermal spraying technology. In: Thermal Spray Fundamentals: From Powder to Part, pp. 1401–1566. Springer (2014)
7.
Zurück zum Zitat Jambagi, S.C., Bandyopadhyay, P.P.: Plasma sprayed carbon nanotube reinforced splats and coatings. J. Eur. Ceram. Soc. 37(5), 2235–2244 (2017)CrossRef Jambagi, S.C., Bandyopadhyay, P.P.: Plasma sprayed carbon nanotube reinforced splats and coatings. J. Eur. Ceram. Soc. 37(5), 2235–2244 (2017)CrossRef
8.
Zurück zum Zitat Pawlowski, L.: The Science and Engineering of Thermal Spray Coatings, 2nd edn. Wiley (2008) Pawlowski, L.: The Science and Engineering of Thermal Spray Coatings, 2nd edn. Wiley (2008)
9.
Zurück zum Zitat Fauchais, P.: Current status and future directions of thermal spray coatings and techniques. In: Future Development of Thermal Spray Coatings, Woodhead Publishing, pp. 17–49 (2015)CrossRef Fauchais, P.: Current status and future directions of thermal spray coatings and techniques. In: Future Development of Thermal Spray Coatings, Woodhead Publishing, pp. 17–49 (2015)CrossRef
10.
Zurück zum Zitat Budinski, K.G.: Surface Engineering for Wear Resistance. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, United States (1988) Budinski, K.G.: Surface Engineering for Wear Resistance. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, United States (1988)
11.
Zurück zum Zitat Verdon, C., Karimi, A., Martin, J.-L.: A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures. Mater. Sci. Eng., A 246(1–2), 11–24 (1998)CrossRef Verdon, C., Karimi, A., Martin, J.-L.: A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures. Mater. Sci. Eng., A 246(1–2), 11–24 (1998)CrossRef
12.
Zurück zum Zitat Kuroda, S., Kawakita, J., Watanabe, M., Katanoda, H.: Warm spraying—a novel coating process based on high-velocity impact of solid particles. Sci. Technol. Adv. Mater. 9(3), 33002 (2008)CrossRef Kuroda, S., Kawakita, J., Watanabe, M., Katanoda, H.: Warm spraying—a novel coating process based on high-velocity impact of solid particles. Sci. Technol. Adv. Mater. 9(3), 33002 (2008)CrossRef
13.
Zurück zum Zitat Ann Gan, J., Berndt, C.C.: Thermal spray forming of titanium and its alloys. In: Titanium Powder Metallurgy, pp. 425–446. Butterworth-Heinemann (2015) Ann Gan, J., Berndt, C.C.: Thermal spray forming of titanium and its alloys. In: Titanium Powder Metallurgy, pp. 425–446. Butterworth-Heinemann (2015)
14.
Zurück zum Zitat Heimann, R.B.: Applications of plasma-sprayed ceramic coatings. Key Eng. Mater. 122–124, 399–442 (1996)CrossRef Heimann, R.B.: Applications of plasma-sprayed ceramic coatings. Key Eng. Mater. 122–124, 399–442 (1996)CrossRef
15.
Zurück zum Zitat Jambagi, S.C., Sarkar, N., Bandyopadhyay, P.P.: Preparation of carbon nanotube doped ceramic powders for plasma spraying using heterocoagulation method. J. Eur. Ceram. Soc. 35(3), 989–1000 (2015)CrossRef Jambagi, S.C., Sarkar, N., Bandyopadhyay, P.P.: Preparation of carbon nanotube doped ceramic powders for plasma spraying using heterocoagulation method. J. Eur. Ceram. Soc. 35(3), 989–1000 (2015)CrossRef
16.
Zurück zum Zitat Jambagi, S.C., Agarwal, A., Sarkar, N., Bandyopadhyay, P.P.: Plasma-sprayed titania and alumina coatings obtained from feedstocks prepared by heterocoagulation with 1 wt.% carbon nanotube. J. Mater. Eng. Perform. 27(5), 2364–2372 (2018)CrossRef Jambagi, S.C., Agarwal, A., Sarkar, N., Bandyopadhyay, P.P.: Plasma-sprayed titania and alumina coatings obtained from feedstocks prepared by heterocoagulation with 1 wt.% carbon nanotube. J. Mater. Eng. Perform. 27(5), 2364–2372 (2018)CrossRef
17.
Zurück zum Zitat Dorfman, M.R.: Thermal spray coatings. Handb. Environ. Degrad. Mater., 469–488 (2018) Dorfman, M.R.: Thermal spray coatings. Handb. Environ. Degrad. Mater., 469–488 (2018)
18.
Zurück zum Zitat Mishra, R.S., Mahoney, M.W., McFadden, S.X., Mara, N.A., Mukherjee, A.K.: High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr. Mater. 42(2), 163–168 (1999)CrossRef Mishra, R.S., Mahoney, M.W., McFadden, S.X., Mara, N.A., Mukherjee, A.K.: High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr. Mater. 42(2), 163–168 (1999)CrossRef
19.
Zurück zum Zitat Mishra, R.S., Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. R Reports 50(1–2), 1–78 (2005)CrossRef Mishra, R.S., Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. R Reports 50(1–2), 1–78 (2005)CrossRef
20.
Zurück zum Zitat Ma, Z.Y.: Friction stir processing technology: a review. Metall. Mater. Trans. A 39(3), 642–658 (2008)CrossRef Ma, Z.Y.: Friction stir processing technology: a review. Metall. Mater. Trans. A 39(3), 642–658 (2008)CrossRef
21.
Zurück zum Zitat Bajakke, P.A., Malik, V.R., Deshpande, A.S.: Particulate metal matrix composites and their fabrication via friction stir processing–a review. Mater. Manuf. Process. 34(8), 833–881 (2019)CrossRef Bajakke, P.A., Malik, V.R., Deshpande, A.S.: Particulate metal matrix composites and their fabrication via friction stir processing–a review. Mater. Manuf. Process. 34(8), 833–881 (2019)CrossRef
22.
Zurück zum Zitat Farias, A., Batalha, G.F., Prados, E.F., Magnabosco, R., Delijaicov, S.: Tool wear evaluations in friction stir processing of commercial titanium Ti–6Al–4V. Wear 302(1–2), 1327–1333 (2013)CrossRef Farias, A., Batalha, G.F., Prados, E.F., Magnabosco, R., Delijaicov, S.: Tool wear evaluations in friction stir processing of commercial titanium Ti–6Al–4V. Wear 302(1–2), 1327–1333 (2013)CrossRef
23.
Zurück zum Zitat Padhy, G.K., Wu, C.S., Gao, S.: Friction stir based welding and processing technologies—processes, parameters, microstructures and applications: a review. J. Mater. Sci. Technol. 34, 1–38 (2017)CrossRef Padhy, G.K., Wu, C.S., Gao, S.: Friction stir based welding and processing technologies—processes, parameters, microstructures and applications: a review. J. Mater. Sci. Technol. 34, 1–38 (2017)CrossRef
24.
Zurück zum Zitat Gandra, J., Pereira, D., Miranda, R.M., Vilaça, P.: Influence of process parameters in the friction surfacing of AA 6082–T6 over AA 2024–T3. Procedia CIRP 7, 341–346 (2013)CrossRef Gandra, J., Pereira, D., Miranda, R.M., Vilaça, P.: Influence of process parameters in the friction surfacing of AA 6082–T6 over AA 2024–T3. Procedia CIRP 7, 341–346 (2013)CrossRef
25.
Zurück zum Zitat Yu, M., Zhang, Z., Zhao, H., Zhou, L., Song, X.: Microstructure and corrosion behavior of the ultra-fine grained aluminum coating fabricated by friction surfacing. Mater. Lett. 250, 174–177 (2019)CrossRef Yu, M., Zhang, Z., Zhao, H., Zhou, L., Song, X.: Microstructure and corrosion behavior of the ultra-fine grained aluminum coating fabricated by friction surfacing. Mater. Lett. 250, 174–177 (2019)CrossRef
26.
Zurück zum Zitat Liu, S., Bor, T.C., Van Der Stelt, A.A., Geijselaers, H.J.M., Kwakernaak, C., Kooijman, A.M., Mol, J.M.C., Akkerman, R., Van Den Boogaard, A.H.: Friction surface cladding: an exploratory study of a new solid state cladding process. J. Mater. Process. Tech. 229, 769–784 (2016)CrossRef Liu, S., Bor, T.C., Van Der Stelt, A.A., Geijselaers, H.J.M., Kwakernaak, C., Kooijman, A.M., Mol, J.M.C., Akkerman, R., Van Den Boogaard, A.H.: Friction surface cladding: an exploratory study of a new solid state cladding process. J. Mater. Process. Tech. 229, 769–784 (2016)CrossRef
27.
Zurück zum Zitat Van Der Stelt, A.A., Bor, T.C., Geijselaers, H.J.M., Akkerman, R., Van Den Boogaard, A.H.: Cladding of Advanced Al Alloys Employing Friction Stir Welding, vol. 554–557, pp. 1014–1021 (2013) Van Der Stelt, A.A., Bor, T.C., Geijselaers, H.J.M., Akkerman, R., Van Den Boogaard, A.H.: Cladding of Advanced Al Alloys Employing Friction Stir Welding, vol. 554–557, pp. 1014–1021 (2013)
28.
Zurück zum Zitat Khodabakhshi, F., Marzbanrad, B., Shah, L.H., Jahed, H., Gerlich, A.P.: Surface modification of a cold gas dynamic spray-deposited titanium coating on aluminum alloy by using friction-stir processing. J. Therm. Spray Technol. 28(6), 1185–1198 (2019)CrossRef Khodabakhshi, F., Marzbanrad, B., Shah, L.H., Jahed, H., Gerlich, A.P.: Surface modification of a cold gas dynamic spray-deposited titanium coating on aluminum alloy by using friction-stir processing. J. Therm. Spray Technol. 28(6), 1185–1198 (2019)CrossRef
29.
Zurück zum Zitat Rani, M., Perumal, G., Roy, M., Grewal, H.S., Singh, H., Arora, H.S.: Post-processing of Ni–Cr–Al2O3 Thermal spray coatings through friction stir processing for enhanced erosion–corrosion performance. J. Therm. Spray Technol., pp. 1–12 (2019) Rani, M., Perumal, G., Roy, M., Grewal, H.S., Singh, H., Arora, H.S.: Post-processing of Ni–Cr–Al2O3 Thermal spray coatings through friction stir processing for enhanced erosion–corrosion performance. J. Therm. Spray Technol., pp. 1–12 (2019)
30.
Zurück zum Zitat Mane, K.M., Hosmani, S.S.: Friction stir surface processing of Al 6061 alloy: role of surface alloying with copper and heat-treatment. Trans. Indian Inst. Met. 71(6), 1411–1425 (2018)CrossRef Mane, K.M., Hosmani, S.S.: Friction stir surface processing of Al 6061 alloy: role of surface alloying with copper and heat-treatment. Trans. Indian Inst. Met. 71(6), 1411–1425 (2018)CrossRef
31.
Zurück zum Zitat Rao, K.P., Sankar, A., Rafi, H.K., Ram, G.D.J., Reddy, G.M.: Friction surfacing on nonferrous substrates: a feasibility study. Int. J. Adv. Manuf. Technol. 65(5–8), 755–762 (2013)CrossRef Rao, K.P., Sankar, A., Rafi, H.K., Ram, G.D.J., Reddy, G.M.: Friction surfacing on nonferrous substrates: a feasibility study. Int. J. Adv. Manuf. Technol. 65(5–8), 755–762 (2013)CrossRef
32.
Zurück zum Zitat George Sahaya Nixon, R., Mohanty, B.S., Sathish, R.: Friction surfacing of AISI 316 over mild steel: a characterisation study. Def. Technol. 14(4), 306–312 (2018) George Sahaya Nixon, R., Mohanty, B.S., Sathish, R.: Friction surfacing of AISI 316 over mild steel: a characterisation study. Def. Technol. 14(4), 306–312 (2018)
33.
Zurück zum Zitat Nixon, R.G.S., Mohanty, B.S., Bhaskar, G.B.: Effect of process parameters on physical measurements of AISI316 stainless steel coating on EN24 in friction surfacing. Mater. Manuf. Process. 33(7), 778–785 (2018)CrossRef Nixon, R.G.S., Mohanty, B.S., Bhaskar, G.B.: Effect of process parameters on physical measurements of AISI316 stainless steel coating on EN24 in friction surfacing. Mater. Manuf. Process. 33(7), 778–785 (2018)CrossRef
34.
Zurück zum Zitat Dolatkhah, A., Golbabaei, P., Besharati Givi, M.K., Molaiekiya, F.: Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 37, 458–464 (2012)CrossRef Dolatkhah, A., Golbabaei, P., Besharati Givi, M.K., Molaiekiya, F.: Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 37, 458–464 (2012)CrossRef
35.
Zurück zum Zitat Asadi, P., Faraji, G., Masoumi, A., Givi, M.K.B.: Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: effects of particle types and number of friction stir processing passes. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42(9), 2820–2832 (2011)CrossRef Asadi, P., Faraji, G., Masoumi, A., Givi, M.K.B.: Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: effects of particle types and number of friction stir processing passes. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42(9), 2820–2832 (2011)CrossRef
36.
Zurück zum Zitat Cartigueyen, S., Mahadevan, K.: Wear characteristics of copper-based surface-level microcomposites and nanocomposites prepared by friction stir processing. Friction 4(1), 39–49 (2016)CrossRef Cartigueyen, S., Mahadevan, K.: Wear characteristics of copper-based surface-level microcomposites and nanocomposites prepared by friction stir processing. Friction 4(1), 39–49 (2016)CrossRef
37.
Zurück zum Zitat Salekrostam, R., Besharati Givi, M.K., Asadi, P., Bahemmat, P.: Influence of friction stir processing parameters on the fabrication of SiC/316L surface composite. Defect Diffus. Forum 297–301, 221–226 (2010)CrossRef Salekrostam, R., Besharati Givi, M.K., Asadi, P., Bahemmat, P.: Influence of friction stir processing parameters on the fabrication of SiC/316L surface composite. Defect Diffus. Forum 297–301, 221–226 (2010)CrossRef
38.
Zurück zum Zitat Shamsipur, A., Kashani-Bozorg, S.F., Zarei-Hanzaki, A.: The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer. Surf. Coatings Technol. 206(6), 1372–1381 (2011)CrossRef Shamsipur, A., Kashani-Bozorg, S.F., Zarei-Hanzaki, A.: The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer. Surf. Coatings Technol. 206(6), 1372–1381 (2011)CrossRef
39.
Zurück zum Zitat Parumandla, N., Adepu, K.: Effect of tool shoulder geometry on fabrication of Al/Al2O3 surface nano composite by friction stir processing. Part. Sci. Technol., 1–10 (2018) Parumandla, N., Adepu, K.: Effect of tool shoulder geometry on fabrication of Al/Al2O3 surface nano composite by friction stir processing. Part. Sci. Technol., 1–10 (2018)
40.
Zurück zum Zitat Suvarna Raju, L., Kumar, A.: Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing. Def. Technol. 10(4), 375–383 (2014)CrossRef Suvarna Raju, L., Kumar, A.: Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing. Def. Technol. 10(4), 375–383 (2014)CrossRef
41.
Zurück zum Zitat Ghasemi-Kahrizsangi, A., Kashani-Bozorg, S.F., Moshref-Javadi, M., Sharififar, M.: Friction stir processing of mild steel/Al2O3 nanocomposite: modeling and experimental studies. Metallogr. Microstruct. Anal. 4(2), 122–130 (2015)CrossRef Ghasemi-Kahrizsangi, A., Kashani-Bozorg, S.F., Moshref-Javadi, M., Sharififar, M.: Friction stir processing of mild steel/Al2O3 nanocomposite: modeling and experimental studies. Metallogr. Microstruct. Anal. 4(2), 122–130 (2015)CrossRef
42.
Zurück zum Zitat Shafiei-Zarghani, A., Kashani-Bozorg, S.F., Gerlich, A.P.: Strengthening analyses and mechanical assessment of Ti/Al2O3 nano-composites produced by friction stir processing. Mater. Sci. Eng., A 631, 75–85 (2015)CrossRef Shafiei-Zarghani, A., Kashani-Bozorg, S.F., Gerlich, A.P.: Strengthening analyses and mechanical assessment of Ti/Al2O3 nano-composites produced by friction stir processing. Mater. Sci. Eng., A 631, 75–85 (2015)CrossRef
43.
Zurück zum Zitat Liu, Q., Ke, L., Liu, F., Huang, C., Xing, L.: Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Mater. Des. 45, 343–348 (2013)CrossRef Liu, Q., Ke, L., Liu, F., Huang, C., Xing, L.: Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Mater. Des. 45, 343–348 (2013)CrossRef
44.
Zurück zum Zitat Soltani, M., Shamanian, M., Niroumand, B.: Surface characteristics improvement of AZ31B magnesium by surface compositing with carbon nano-tubes through friction stir processing. Int. J. Adv. Des. Manuf. Technol. 8(1), 85–95 (2015) Soltani, M., Shamanian, M., Niroumand, B.: Surface characteristics improvement of AZ31B magnesium by surface compositing with carbon nano-tubes through friction stir processing. Int. J. Adv. Des. Manuf. Technol. 8(1), 85–95 (2015)
45.
Zurück zum Zitat Chen, W.L., Huang, C.P., Ke, L.M.: A novel way to fabricate carbon nanotubes reinforced copper matrix composites by friction stir processing. Adv. Mater. Res. 391–392, 524–529 (2011)CrossRef Chen, W.L., Huang, C.P., Ke, L.M.: A novel way to fabricate carbon nanotubes reinforced copper matrix composites by friction stir processing. Adv. Mater. Res. 391–392, 524–529 (2011)CrossRef
46.
Zurück zum Zitat Mahmoud, E.R.I., Al-qozaim, A.M.A.: Fabrication of in-situ Al–Cu intermetallics on aluminum surface by friction stir processing. Arab. J. Sci. Eng. 41(5), 1757–1769 (2016)CrossRef Mahmoud, E.R.I., Al-qozaim, A.M.A.: Fabrication of in-situ Al–Cu intermetallics on aluminum surface by friction stir processing. Arab. J. Sci. Eng. 41(5), 1757–1769 (2016)CrossRef
47.
Zurück zum Zitat Azizieh, M., Mazaheri, M., Balak, Z., Kafashan, H., Kim, H.S.: Fabrication of Mg/Al12Mg17 in-situ surface nanocomposite via friction stir processing. Mater. Sci. Eng., A 712, 655–662 (2018)CrossRef Azizieh, M., Mazaheri, M., Balak, Z., Kafashan, H., Kim, H.S.: Fabrication of Mg/Al12Mg17 in-situ surface nanocomposite via friction stir processing. Mater. Sci. Eng., A 712, 655–662 (2018)CrossRef
48.
Zurück zum Zitat Li, B., Shen, Y., Lei, L., Hu, W.: Fabrication and evaluation of Ti3Alp/Ti–6Al–4V surface layer via additive friction-stir processing. Mater. Manuf. Process. 29(4), 412–417 (2014)CrossRef Li, B., Shen, Y., Lei, L., Hu, W.: Fabrication and evaluation of Ti3Alp/Ti–6Al–4V surface layer via additive friction-stir processing. Mater. Manuf. Process. 29(4), 412–417 (2014)CrossRef
49.
Zurück zum Zitat Akbari, M., Shojaeefard, M.H., Asadi, P., Khalkhali, A.: Wear and mechanical properties of surface hybrid metal matrix composites on Al–Si aluminum alloys fabricated by friction stir processing. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 1–10 (2017) Akbari, M., Shojaeefard, M.H., Asadi, P., Khalkhali, A.: Wear and mechanical properties of surface hybrid metal matrix composites on Al–Si aluminum alloys fabricated by friction stir processing. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 1–10 (2017)
50.
Zurück zum Zitat Dixit, M., Newkirk, J.W., Mishra, R.S.: Properties of friction stir-processed Al 1100-NiTi composite. Scr. Mater. 56(6), 541–544 (2007)CrossRef Dixit, M., Newkirk, J.W., Mishra, R.S.: Properties of friction stir-processed Al 1100-NiTi composite. Scr. Mater. 56(6), 541–544 (2007)CrossRef
51.
Zurück zum Zitat Janbozorgi, M., Shamanian, M., Sadeghian, M., Sepehrinia, P.: Improving tribological behavior of friction stir processed A413/SiCp surface composite using MoS2 lubricant particles. Trans. Nonferrous Met. Soc. China 27(2), 298–304 (2017CrossRef Janbozorgi, M., Shamanian, M., Sadeghian, M., Sepehrinia, P.: Improving tribological behavior of friction stir processed A413/SiCp surface composite using MoS2 lubricant particles. Trans. Nonferrous Met. Soc. China 27(2), 298–304 (2017CrossRef
52.
Zurück zum Zitat Prakash, T., Sivasankaran, S., Sasikumar, P.: Mechanical and tribological behaviour of friction-stir-processed al 6061 aluminium sheet metal reinforced with Al2O3/0.5 Gr hybrid surface nanocomposite. Arab. J. Sci. Eng. 40(2), 559–569 (2014)CrossRef Prakash, T., Sivasankaran, S., Sasikumar, P.: Mechanical and tribological behaviour of friction-stir-processed al 6061 aluminium sheet metal reinforced with Al2O3/0.5 Gr hybrid surface nanocomposite. Arab. J. Sci. Eng. 40(2), 559–569 (2014)CrossRef
53.
Zurück zum Zitat Malik, V., Kailas, S.V.: Plasticine modeling of material mixing in friction stir welding. J. Mater. Process. Technol. 258, 80–88 (2018)CrossRef Malik, V., Kailas, S.V.: Plasticine modeling of material mixing in friction stir welding. J. Mater. Process. Technol. 258, 80–88 (2018)CrossRef
54.
Zurück zum Zitat Thomas, W.M., Johnson, K.I., Wiesner, C.S.: Friction stir welding-recent developments in tool and process technologies. Adv. Eng. Mater. 5(7), 485–490 (2003)CrossRef Thomas, W.M., Johnson, K.I., Wiesner, C.S.: Friction stir welding-recent developments in tool and process technologies. Adv. Eng. Mater. 5(7), 485–490 (2003)CrossRef
55.
Zurück zum Zitat Arab, S.M., Zebarjad, S.M., Jahromi, S.A.J.: Fabrication of AZ31/MWCNTs surface metal matrix composites by friction stir processing: investigation of microstructure and mechanical properties. J. Mater. Eng. Perform. 26(11), 5366–5374 (2017)CrossRef Arab, S.M., Zebarjad, S.M., Jahromi, S.A.J.: Fabrication of AZ31/MWCNTs surface metal matrix composites by friction stir processing: investigation of microstructure and mechanical properties. J. Mater. Eng. Perform. 26(11), 5366–5374 (2017)CrossRef
56.
Zurück zum Zitat Ahmadifard, S., Kazemi, S., Momeni, A.: A356/TiO2 nanocomposite fabricated by friction stir processing: microstructure, mechanical properties and tribologic behavior. JOM (2018) Ahmadifard, S., Kazemi, S., Momeni, A.: A356/TiO2 nanocomposite fabricated by friction stir processing: microstructure, mechanical properties and tribologic behavior. JOM (2018)
57.
Zurück zum Zitat Faraji, G., Dastani, O., Akbari Mousavi, S.A.A.: Microstructures and mechanical properties of Al2O3/AZ91 surface nanocomposite layer produced by friction stir processing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 225(8), 1331–1345 (2011) Faraji, G., Dastani, O., Akbari Mousavi, S.A.A.: Microstructures and mechanical properties of Al2O3/AZ91 surface nanocomposite layer produced by friction stir processing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 225(8), 1331–1345 (2011)
58.
Zurück zum Zitat Mahmoud, E.R.I., Takahashi, M., Shibayanagi, T., Ikeuchi, K.: Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface. Sci. Technol. Weld. Join. 14(5), 413–425 (2009)CrossRef Mahmoud, E.R.I., Takahashi, M., Shibayanagi, T., Ikeuchi, K.: Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface. Sci. Technol. Weld. Join. 14(5), 413–425 (2009)CrossRef
59.
Zurück zum Zitat Morisada, Y., Fujii, H., Nagaoka, T., Fukusumi, M.: Nanocrystallized magnesium alloy—uniform dispersion of C60 molecules. Scr. Mater. 55(11), 1067–1070 (2006)CrossRef Morisada, Y., Fujii, H., Nagaoka, T., Fukusumi, M.: Nanocrystallized magnesium alloy—uniform dispersion of C60 molecules. Scr. Mater. 55(11), 1067–1070 (2006)CrossRef
60.
Zurück zum Zitat Asadi, P., Faraji, G., Besharati, M.K.: Producing of AZ91/SiC composite by friction stir processing (FSP). Int. J. Adv. Manuf. Technol. 51(1–4), 247–260 (2010)CrossRef Asadi, P., Faraji, G., Besharati, M.K.: Producing of AZ91/SiC composite by friction stir processing (FSP). Int. J. Adv. Manuf. Technol. 51(1–4), 247–260 (2010)CrossRef
61.
Zurück zum Zitat Asadi, P., Givi, M.K.B., Abrinia, K., Taherishargh, M., Salekrostam, R.: Effects of SiC particle size and process parameters on the microstructure and hardness of AZ91/SiC composite layer fabricated by FSP. J. Mater. Eng. Perform. 20(9), 1554–1562 (2011)CrossRef Asadi, P., Givi, M.K.B., Abrinia, K., Taherishargh, M., Salekrostam, R.: Effects of SiC particle size and process parameters on the microstructure and hardness of AZ91/SiC composite layer fabricated by FSP. J. Mater. Eng. Perform. 20(9), 1554–1562 (2011)CrossRef
62.
Zurück zum Zitat Barmouz, M., Asadi, P., Besharati Givi, M.K., Taherishargh, M.: Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles’ size and volume fraction. Mater. Sci. Eng. A 528(3), 1740–1749 (2011)CrossRef Barmouz, M., Asadi, P., Besharati Givi, M.K., Taherishargh, M.: Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles’ size and volume fraction. Mater. Sci. Eng. A 528(3), 1740–1749 (2011)CrossRef
63.
Zurück zum Zitat Agrawal, A.K., Narayanan, R.G., Kailas, S.V.: End forming behaviour of friction stir processed Al 6063-T6 tubes at different tool rotational speeds. J. Strain Anal. Eng. Des. 52(7), 434–449 (2017)CrossRef Agrawal, A.K., Narayanan, R.G., Kailas, S.V.: End forming behaviour of friction stir processed Al 6063-T6 tubes at different tool rotational speeds. J. Strain Anal. Eng. Des. 52(7), 434–449 (2017)CrossRef
64.
Zurück zum Zitat Mehta, K.P., Badheka, V.J.: Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminum. Mater. Manuf. Process. 31(3), 255–263 (2016)CrossRef Mehta, K.P., Badheka, V.J.: Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminum. Mater. Manuf. Process. 31(3), 255–263 (2016)CrossRef
65.
Zurück zum Zitat Madhu, H.C., Ajay Kumar, P., Perugu, C.S., Kailas, S.V.: Microstructure and mechanical properties of friction stir process derived Al-TiO2 nanocomposite. J. Mater. Eng. Perform. 27(3), 1318–1326 (2018)CrossRef Madhu, H.C., Ajay Kumar, P., Perugu, C.S., Kailas, S.V.: Microstructure and mechanical properties of friction stir process derived Al-TiO2 nanocomposite. J. Mater. Eng. Perform. 27(3), 1318–1326 (2018)CrossRef
66.
Zurück zum Zitat Nadammal, N., Kailas, S.V., Suwas, S.: A bottom-up approach for optimization of friction stir processing parameters; a study on aluminium 2024-T3 alloy. Mater. Des. 65, 127–138 (2015)CrossRef Nadammal, N., Kailas, S.V., Suwas, S.: A bottom-up approach for optimization of friction stir processing parameters; a study on aluminium 2024-T3 alloy. Mater. Des. 65, 127–138 (2015)CrossRef
67.
Zurück zum Zitat Ajay Kumar, P., Raj, R., Kailas, S.V.: A novel in-situ polymer derived nano ceramic MMC by friction stir processing. Mater. Des. 85, 626–634 (2015) Ajay Kumar, P., Raj, R., Kailas, S.V.: A novel in-situ polymer derived nano ceramic MMC by friction stir processing. Mater. Des. 85, 626–634 (2015)
68.
Zurück zum Zitat Ajay Kumar, P., Yadav, D., Perugu, C.S., Kailas, S.V.: Influence of particulate reinforcement on microstructure evolution and tensile properties of in-situ polymer derived MMC by friction stir processing. Mater. Des. 113, 99–108 (2017) Ajay Kumar, P., Yadav, D., Perugu, C.S., Kailas, S.V.: Influence of particulate reinforcement on microstructure evolution and tensile properties of in-situ polymer derived MMC by friction stir processing. Mater. Des. 113, 99–108 (2017)
69.
Zurück zum Zitat Ajay Kumar, P.: Evolution of in-situ nano-pores during friction stir processing of polymer derived ceramic reinforced metal matrix composites. Res. Reports Met. (2017) Ajay Kumar, P.: Evolution of in-situ nano-pores during friction stir processing of polymer derived ceramic reinforced metal matrix composites. Res. Reports Met. (2017)
Metadaten
Titel
Friction Stir Processing: An Emerging Surface Engineering Technique
verfasst von
Padmakumar A. Bajakke
Sudhakar C. Jambagi
Vinayak R. Malik
Anand S. Deshpande
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-43232-4_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.