Skip to main content
Erschienen in: Meccanica 10/2020

Open Access 07.10.2020

Anisotropic stress state and small strain stiffness in granular materials: RC experiments and DEM simulations

verfasst von: Meisam Goudarzy, Vanessa Magnanimo, Diethard König, Tom Schanz

Erschienen in: Meccanica | Ausgabe 10/2020

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper combines experimental and numerical analyses to study the relation between small strain stiffness and micro-structure of an idealized granular material under isotropic and anisotropic stress conditions. Results from the resonant column device on glass ballotini show that the relation between the maximum shear modulus and anisotropic stress components strongly depends on the applied stress path. Discrete element simulations (DEM) are performed to investigate the material behaviour along isotropic compression, triaxial compression and constant \(\hbox {K}_0\) deformation. The DEM analysis reveals that each stress path is associated with a characteristic evolution of the coordination number, i.e., the average number of contacts per particle. In turn, the maximum shear modulus is found to be a direct function of the coordination number. In order to include the micro-structure interpretation in the analytical description, a modified version of Hardin’s relation is proposed as a function of coordination number, void ratio and mean pressure.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction and state of the art

A realistic representation of elasticity, exhibited by soils at very small strains, is essential for a proper description of many geomechanical problems. They include geotechnical applications for which the soil displacements are requested to be small, like in the regions around foundations and excavations in urban areas (for more examples and applications see [3]) or the development of elastic–plastic constitutive models, where the elastic regime needs a proper description, e.g. [7, 23]. Several authors have carried on experimental studies about the influence of material characteristics (e.g. void ratio and grain size distribution) and initial conditions on the small strain properties of geo-materials, e.g. [6, 21, 22, 31, 44, 47, 52]. The majority of those studies are restricted to isotropic stress conditions. However, the stiffness of geo-materials is affected by the state of stress in the soil. Some efforts have been conducted to assess the effect of stress anisotropy on the shear stiffness by means of piezoelectric elements, e.g. [2, 8, 9, 35, 42, 51, 55], resonant column and torsional shear devices, e.g. [20, 25, 38, 43, 46, 53, 54]. In parallel, empirical relationships have been adapted to predict the maximum shear stiffness in soil elements subjected to anisotropic stress states. Hardin and Black [20] believed that the effect of shear stress on maximum shear modulus, \(G_{max}\), could be neglected. Based on resonant column experiments, they suggested the following equation to describe \(G_{max}\) in samples subjected to anisotropic loading:
$$\begin{aligned} G_{max}= Af(e) p_a^{1-n}\left( \frac{\sigma _v'+\sigma _h'}{2}\right) ^n, \end{aligned}$$
(1)
where \(\sigma _v'\) and \(\sigma _h'\) are the vertical and horizontal stress components in the plane of wave propagation and polarization respectively, A and n are constant empirical parameters, \(p_a\) is the reference pressure (assumed to be 1 kPa in this paper) and f(e) is a function of the void ratio e i.e., the ratio between the volume of voids and volume of solids in the sample. In experiments using the torsional resonant column device, waves are polarized in the horizontal plane and propagate in the vertical direction, thus the measured shear stiffness is \(G_{vh}\). However, for the sake of simplicity, \(G_{vh}\) is often referred to as \(G_{max}\) or \(G_0\). Such nomenclature will be adopted in this work.
Two functions have been mostly used in the literature to capture the effect of void ratio on the shear modulus, namely the relation proposed by Hardin and Black [20],
$$\begin{aligned} f(e)=\frac{(c-e)^2}{(1+e)}, \end{aligned}$$
(2)
and that proposed by Jamiolkowski et al. [26],
$$\begin{aligned} f(e)=e^d, \end{aligned}$$
(3)
where c and d are material constant. Equation 2 is valid for granular soils [20] and has been widely used in previous works (e.g. [19]).  Equation 3 was originally defined in [26] for cohesive soils. However, this equation has been also adopted to capture the effect of void ratio in sands (e.g. [15, 39]) and recently in glass beads experiments [13]. Regressions [13] reveal that a value of d equal to − 3.98 in Eq. 3 provides a very satisfactory fitting for void ratio smaller than 1.0.
Roesler [40] performed experiments on a cubic soil sample and modified Hardin’s relation based on the effect of stress components:
$$\begin{aligned} G_{max}= Af(e)\left( \frac{\sigma _v'}{p_a}\right) ^{n_v}\left( \frac{\sigma _h'}{p_a}\right) ^{n_h}\left( \frac{\sigma _c'}{p_a}\right) ^{n_c}, \end{aligned}$$
(4)
where \(\sigma '_c\) is the horizontal (out of plane) stress component, \(n_v\) and \(n_h\) are the empirical stress exponents for \(\sigma '_v\) and \(\sigma '_h\). In the case of resonant column experiments with \(\sigma '_v\) and \(\sigma '_h\) in plane stress components, Eq. 4 can be simplified as
$$\begin{aligned} G_{max}= Af(e)\left( \frac{\sigma _v'}{p_a}\right) ^{n_v}\left( \frac{\sigma _h'}{p_a}\right) ^{n_h} \end{aligned}$$
(5)
and the effect of \(\sigma '_c\) can be neglected [42, 54]. Despite the massive attention to the topic over the last decades, a proper description of elasticity of granular assemblies, sound for both isotropic and anisotropic conditions, is still lacking. All cited works focus on the role of stress state and density, that were thought to be sufficient to characterize the shear modulus. However, it has been determined that other factors, such as sample preparation and direction of preshearing have also significant effect on the shear stiffness of granular soils (e.g. [4]). Experimental evidences have shown that the micro-structure also plays a crucial role, but very few studies have attempted a micro-mechanical interpretation. Among others, Chen et al. [4, 24] performed monotonic/cyclic loading tests using resonant column device and obtained a relationship between the dynamic shear modulus and fabric in glass beads assemblies. Ezaoui and Di Benedetto [8] used bender elements to underline the effect of (inherent and induced) anisotropy on the elastic tensor under triaxial conditions. Goudarzy et al. [14] performed a series of resonant column experiments on dry Hostun sand to relate the maximum shear modulus with anisotropy along various stress paths. Moreover, Gu et al. [16, 17] performed bender element tests to address the effect of sample preparation on the maximum shear modulus in isotropic samples. The authors observed that different preparations impede a consistent description of \(G_{max}\) in terms of stress and void ratio and related this behaviour to the different micro-structure induced in the samples.
Recent development of computer power has made the discrete element method DEM [5] a popular tool to address complex geomechanical problems, where the kinematics at the microscale is of outmost importance. The relation between elastic stiffness and micro-structure has been studied by [1, 18, 19, 27, 33, 37]. Among others Magnanimo et al. [33] found a unique relation between the elastic moduli of isotropic samples and the average number of contacts per particle, irrespectively of the confining pressure and preparation procedure. Later on, in [2830], the authors have extended the relation between elastic stiffness and fabric to the cases of triaxial compression and undrained pure shear.
In this paper, for the first time experiments and simulations are combined to study the shear stiffness at small strain in granular materials. Resonant column tests are carried out on glass beads samples over several stress paths, namely isotropic compression, triaxial compression (GB-I) and deformation at constant stress ratio \(\hbox {K}_0\) (GB-II). The maximum shear modulus is found to be a function of the sample history, i.e. the anisotropic stress state, and the fitting parameters of Eqs. 1 and 5 to depend on the specific stress path. In agreement with [54], the deviation between the measured \(G_{max}\) and the prediction using Eqs. 1 or 5 becomes maximum in the case of triaxial compression. Along with laboratory tests, DEM simulations are performed to explore the role of micro-structure. Starting from the numerical observations, a modified version of Hardin’s relationship is proposed that introduces the micro-structure via the simple coordination number.
For ease of discussion, this study is organized into four sections. In section two, the resonant column tests on glass beads are described. Afterwards, results for the maximum shear modulus along the three stress paths, namely isotropic, triaxial (GB-I) and constant \(\hbox {K}_0\) (GB-II) are presented. In section three, numerical simulations are introduced and the experimental data are used for calibration and validation of the DEM model. In section four, numerical and experimental data are compared and a modified version of Eq. 1 is proposed.

2 Resonant column experiments

Laboratory tests on glass beads were performed by means of the resonant column (RC) device at Ruhr Universität Bochum, Fig. 1 (see [11, 12, 14]). The Bochum RC device is based on the rotational vibration of a cylindrical sample (10 cm in diameter and 20 cm in height) to determine the rotational resonant frequency [11].
Glass beads were used in the experimental program as granular material. The glass particles are round, bright with smooth surface, provider is Mühlmeier Company, Germany. Particles had diameter \(D=1.25\) mm with specific gravity \(G_s=2.55\). Particle and sample characteristics are summarized in Table 1. Maximum and minimum void ratio of the samples were \(e_{max} = 0.62\) and \(e_{min} = 0.56\) respectively determined using DIN standard. Dense samples, with a relative density of 90\(\%\), were prepared by dry deposition. A vacuum of 50 kPa was applied through the top and bottom caps to stabilise the sample before assembling the resonant column device. Afterward, the vacuum was reduced and the confining pressure was slowly increased up to the target stress state. The prepared samples were subjected to three stress paths, namely isotropic and triaxial compression (GB-I in the following) and constant \(\hbox {K}_0\) deformation (GB-II in the following). Those are shown in Fig. 2d, where the deviatoric stress \(q = (\sigma_{v}^{\prime} - \sigma_{h}^{\prime})/2\) is plotted versus the mean effective pressure \(p = (\sigma_{v}^{\prime} + \sigma_{h}^{\prime})/2\). Before performing resonant column tests, an independent triaxial experiment was conducted on a specimen with void ratio \(e=0.58\) and consolidation stress of 200 kPa. This experiment was conducted under drained conditions to find the failure line, which is shown in Fig. 2, along with the stress path of the triaxial experiment. Resonant column experiments were performed at specific points along this stress path as indicated in the figure. Similarly, RC experiments were conducted at given stress states along the constant \(\hbox {K}_0\) and isotropic stress paths. In the case of isotropic stress state, the specimens were subjected to the target stresses of 100, 200, 300 and 400 kPa. For the stress states along GB-I, the confining pressure was kept constant, \(\sigma _h'= 200\) kPa and the vertical load was increased up to \(\sigma _v'\) = 250, 300, 350, 400 and 420 kPa. In order to perform tests along the stress path GB-II, the confining stress was increased up to the isotropic pressure of 100, 150, 200 and 300 kPa and then, the vertical stress was increased to reach a constant stress ratio \(\sigma _v'/\sigma _h'= 2\).
Table 1
Particles and sample characteristics in laboratory tests and numerical simulations
Shape
Experiments
Cylindrical
DEM
Cubic
Sample characteristics
Size
d = 10 cm, H = 20 cm
36.5 * 36.5 * 36.5 mm
Void ratio
e = 0.57
e = 0.57–0.58
Preparation
Dry deposition
Random generation S-I, S-II, S-III, S-IV
Particle characteristics
Particle diameter
D = 1.25 mm
Number of particles
N = 10,000
Shear modulus
G = 29 GPa
Each stress state was reached by using an independent sample. After applying the target stress to the sample, the volume change was measured through non-contact displacement transducers (see Fig. 1) and the initial void ratio was corrected to the value at the time of RC test. Afterwards, the top of the sample was excited in order to measure the resonant frequency and, consequently, the shear stiffness for small amplitude vibrations, \(G_{max}\).

2.1 Influence of stress history on the maximum shear modulus

Experimental results reveal that the maximum shear modulus, \(G_{max}\), is strongly affected by the anisotropic stress state. The shear stiffness from RC experiments is normalized with the void ratio function, f(e), as given by Eq. 2 with a constant value \(c=2.17\). Figure 3 shows the normalized shear stiffness, \(G_{max}/f(e)\), versus \(p'\) for the stress paths isotropic, GB-I and GB-II following the proportionality proposed in Eq. 1. Isotropic data are fitted by a power law function. The figure shows significant deviation, while anisotropic data would collapse on the isotropic fitting line, if Eq. 1 held for all stress paths. 
In Fig. 4, \(G_{max}/f(e)\) is plotted with respect to the stress components, \(\sigma '_{v}\) and \(\sigma '_{h}\), in accordance to Eq. 5. A hypersurface has been fitted to the isotropic data points. The projections of the data in the planes \(G_{max}/f(e)-\sigma '_{v}\) and \(G_{max}/f(e)-\sigma '_{h}\) are plotted on the right side of the same figure. If the normalized shear stiffness on different stress paths relate with \(\sigma '_{v}\) and \(\sigma '_{h}\) in a unique way, all data should lie on the 3D hypersurface. Once more, the anisotropic data show a significant deviation, meaning that there is no unique surface to describe \(G_{max}\), in the space of density and stress (components).
Both, Figs. 3 and 4 highlight significant differences between the three stress paths, both quantitatively and qualitatively. While the isotropic and GB-II data follow a similar trend with the stress function(s), results from the triaxial compression show a severe deviation from the expected behaviour, as already reported in [54] and more recently in [14]. GB-I data are in line with isotropic ones in the low stress regime but the agreement breaks at high stresses, where the behaviour becomes non-monotonic. A consistent scaling for the data might be recovered with the aid of fitting parameters specific for each stress path and stress component. However, such an approach impedes the fundamental understanding of the problem and its universal description. It is concluded that a macroscopic description in terms of void ratio and effective stress (components) is not sufficient to describe the shear stiffness of a granular assembly and a micro-mechanical interpretation must be attempted.

3 Numerical simulations

In order to explore the micro-structure, the same experiments as described in the previous section were reproduced by means of DEM simulations [45, 5]. 10,000 frictional elastic spheres, were randomly generated in a periodic cubic cell. Material properties resembling the glass beads were used as reported in Table 1. The interaction between particles was given by a non-central contact force in which the normal component follows the non-linear Hertz law. In the tangential direction a bilinear force-displacement relationship was adopted, with elastic displacement followed by Coulomb sliding. When the friction threshold is reached, particles loose contact and slide with a constant tangential force \(f_t^c=\mu f_n^c\), where, \(\mu\) is the friction coefficient and \(f_n^c\) the normal component of the contact force. For the sake of simplicity gravity was neglected in the numerical experiments. The following definition of the stress tensor was applied to quantify the macroscopic response of a DEM assembly:
$$\begin{aligned} \sigma _{ij}=\frac{1}{V} \displaystyle {\sum _{c=1}^{N_c}f_i^c l_j^c}, \end{aligned}$$
(6)
where V is the total volume of the assembly, \(N_c\) is the total number of contacts, \(f_{i}^c=(f_{n}^c)_{i}+(f_{t}^c)_{i}\) denotes the contact force, and \(l^c_{i}\) is the branch vector joining the centres of two particles in contact.
When looking at the micro-structure, the coordination number characterises the average number of contacts in the sample. The simple definition of the coordination number is \(CN = 2N_c/N_B\), with \(N_B\) number of particles in the sample. However, numerical simulations have revealed that at any time, during compression, there are some particles with no contacts and some particles with only one contact. Those rattlers do not contribute to the transmission of stress and must be excluded from the calculation. A corrected coordination number was introduced as [48]
$$\begin{aligned} CN=\frac{(2N_c-N_1)}{(N_B-N_0-N_1 )}, \end{aligned}$$
(7)
where \(N_1\) and \(N_0\) are the number of particles with only one or no contacts, respectively. It is worthwhile to notice that here the scalar CN is used as main descriptor of the micro-structure for all samples, rather than the fabric tensor, that provides the orientation of the contact network [36]. This point will be further addressed in Sect. 4.

3.1 Sample preparation

It is well-known experimentally that the preparation protocol has a strong influence granular samples and their internal structure [8, 17]. The aim was to simulate the experiments in Sect. 2, i.e., numerical samples with void ratio \(e \approx\) 0.57 and initial \(p'=50\) kPa. Since the actual micro-structure of the laboratory sample was unknown, several packings with different contact arrangements were attempted. The numerical protocol suggested by [33] was adopted as sketched in Fig. 5. After random generation of particles in a periodic box, frictionless particles were isotropically compressed from an initial gas to the desired void ratio \(e \approx 0.57\). The compression was stopped just before such value to obtain a dense but non-equilibrated packing. Then, the sample was relaxed, reaching zero-pressure and zero-coordination number. A second isotropic compression followed with friction active \(\mu = \mu _i\) to reach the target pressure \(p'=50\) kPa, which induced only minimal changes in the void ratio. In this stage, four different friction coefficients were used \(\mu _i\) = 0.01, 0.04, 0.06 and 0.1. A further equilibration stage followed where the final value of friction was set to \(\mu _f\) = 0.3. Thus, packings were finally characterized by the same pressure, void ratio and friction coefficient. However, their structure (coordination number) was different, as related to the specific \(\mu _i\) during the compaction loading. Characteristics of the numerical samples (S-I, S-II, S-III and S-IV) are collected in Table 2. Figure 6 shows the coordination number CN of the prepared specimens at the initial pressure \(p'=50\) kPa. As relevant information, this figure shows the significant effect of the initial friction \(\mu _i\) on CN. CN decreases with increasing \(\mu _i\) for specimens with same void ratio. The initial friction \(\mu _i\) affected the material behaviour during preparation and, in turn, the micro-structure of the samples.
Table 2
Initial preparation friction μi, pressure p′, void ratio e, coordination number CN and maximum shear modulus, \(G_{max}\), for the four numerical configurations in the initial, isotropic state. The average error among several DEM measurements of \(G_{max}\) for an individual sample is 1.5 \(\%\)
Sample preparation
\(\mu _i (-)\)
\(p' (kPa)\)
\(e (-)\)
\(CN (-)\)
\(G_{max} (MPa)\)
S-I
0.01
50
0.575
5.88
148.10
0.01
100
0.572
5.96
192.20
0.01
200
0.570
6.04
249.40
0.01
300
0.570
6.08
287.90
S-II
0.04
50
0.580
5.67
134.47
0.04
100
0.580
5.76
175.23
0.04
200
0.577
5.81
226.60
0.04
300
0.577
5.85
265.33
S-III
0.06
50
0.582
5.56
127.50
0.06
100
0.582
5.64
166.95
0.06
200
0.580
5.64
208.00
0.06
300
0.580
5.67
242.65
S-IV
0.1
50
0.584
5.35
112.60
0.1
100
0.584
5.42
146.40
0.1
200
0.582
5.47
193.70
0.1
300
0.582
5.50
222.20

3.2 Isotropic compression, triaxial compression and constant \(\hbox {K}_0\) stress states

After preparation, each of the four isotropic configurations was subjected to three stress paths as in Fig. 2. In the first case, the packings were isotropically compressed from \(p'=50\) kPa to the pressure values of 100, 200 and 300 kPa. The stress state GB-I (triaxial compression) was realised numerically starting from the isotropic states at 200 kPa. The samples were further compressed in the axial direction while the lateral stress \(\sigma _h'=200\) kPa was kept constant via a servo mechanism [34, 48]. Finally, the servo-control mechanism was adopted again to deform the samples with constant stress ratio \(\hbox {K}_0=\sigma _h'/\sigma _v'\) (stress states GB-II). The characteristics of the isotropic packings are reported in Table 2, with coordination number increasing with pressure as expected.
Figure 7 shows e versus q for specimens subjected to anisotropic loading along stress paths GB-I and GB-II. As can be seen in Fig. 7a, dilation will start to happen inside the sample for q larger than 100 kPa. However, Fig. 7b shows the negligible effect of q on e along stress path GB-II.
Figure 8 shows CN versus \(p'\) and q for specimens subjected to anisotropic loading along stress paths GB-I and GB-II. In Figs. 8a and c lines that indicate the trend of \(CN(p')\) along isotropic compression are also reported, as extracted from Table 2. Figures 8a and b show that for the stress path GB-I, CN increases slightly up to \(p' \simeq 240\)kPa and \(q \simeq 50\)kPa and then starts decreasing for larger stress. Differently, CN follows a monotonic behaviour in the case of GB-II (Fig. 8c, d). Figure 8a highlights major differences in  \(CN(p')\) between isotropic and triaxial compression GB-I. On the other hand, the values of CN along the constant \(K_0\) deformation (Fig. 8c), agree qualitatively, but not quantitatively, with those under isotropic compression.

3.3 Maximum shear stiffness

In order to calculate the shear stiffness, an incremental shear strain \(\gamma\) was applied to each sample and the corresponding incremental stress was measured after relaxation, following the procedure in [33, 34]. The shear modulus G was then calculated as the ratio between the incremental stress and shear strain:
$$\begin{aligned} G=\frac{(\sigma _{hv})_f-(\sigma _{hv})_i}{\gamma } \end{aligned}$$
(8)
where \((\sigma _{hv})_i\) is the initial shear stress while \((\sigma _{hv})_f\) is the final value after relaxation. The procedure was repeated several times by applying increasing shear amplitude \(\gamma\). The maximum shear modulus \(G_{max}\) was then selected in the very small strain regime, were the modulus G is independent of \(\gamma\) and the material behaviour resembles linear elasticity.

4 Effect of the micro-structure on the shear modulus

Figure 9 shows the numerical shear moduli normalized with the function of volume fraction f(e) using Eq. 2 (Fig. 9a) and Eq. 3 (Fig. 9b) versus \(p'\) for all specimens subjected to isotropic stress. These figures shows the significant effect of sample preparation in the form of CN on the maximum shear modulus. As can be seen, a unique line in form of Eq. 1 can not be used to predict \(G_{max}\) for all specimens with sufficient accuracy. Differences in the trend due the choice of Eqs. 2 or 3 are negligible.
On the other hand, Fig. 10a–d show the normalized modulus, \(G_{max}/f(e)\), with f(e) given by Eq. 2 versus mean effective stress \(p'\) and deviatoric stress q for stress paths GB-I and GB-II. Also these figures show a significant effect of sample preparation on the modulus \(G_{max}\).
In Figs. 9 and 10, DEM simulations are compared with the resonant column data. In all three cases, experiments and simulations follow a very similar trend in the small strain region, and the experimental data always sit in between the numerical boundaries. That is, the experimental samples are well reproduced by DEM. Isotropic stress states (Fig. 9) show the best agreement, with RC data that consistently match the low-coordinated DEM samples. For anisotropic stress paths (Fig. 10) the glass-beads samples seem to move from a low-coordinated configuration (preparation S-IV) to a more coordinated state (preparation S-I). This could be related to the method adopted to calculate the shear stiffness. In triaxial experiments (see [49]) the shear stiffness measured by deviatoric stress and shear strain (see Eq. 8) has been found to decrease faster with shear strain, in comparison to the stiffness inferred by shear wave velocity from bender elements or RC device.
In both Figs. 9 and 10, the effect of void ratio on the shear modulus has been canceled by the normalization of \(G_{max}\) with f(e). The normalized data show a significant dependence on preparation and stress state. Therefore, an extra variable, along with pressure and void ratio, is needed to characterize the history of the granular sample and its effect on the shear modulus.
When comparing Fig. 10 with Fig. 8, the elastic moduli and coordination number seem to follow very similar trends. This suggests a direct relation between these two quantities. Along with the void ratio function f(e), a description of the pressure dependence can be proposed based on particle mechanics to further normalize \(G_{max}\) and isolate the effect of the coordination number CN. Since the granular sample is made by a collection of particles which individually follow the Hertzian contact law, the dependence of the elastic modulus on the effective pressure is assumed to be \(G_{max} \propto p'^{1/3}\) [32, 41, 50], see also [10] for a detailed discussion.
Figure 11 shows the normalized shear moduli \(G_{max}/(f(e)h(p')\), with f(e) given by Eq. 2 and \(h(p')=p'^{1/3}\), versus the coordination number CN, for all numerical packings. Surprisingly, it is found that all data result in a unique curve, irrespective of induced anisotropy or (deviatoric) stress state. That is, once the actual state has been achieved, a measurement of the shear stiffness can be associated with a unique coordination number, which acts as a state variable. This is able to characterize the micro-structure of any granular sample, along with pressure and void ratio, without any additional specification about the stress states. In Fig. 11 extra data from different stress paths have been added, namely isotropic compression in [33] and axisymmetric compression with constant \(p'\) in [29], have been added, in order to check the robustness of the relation between \(G_{max}\) and CN. The output is really encouraging, as the new data show the same scaling as the simulations in this study and the small deviation can be associated to the difference in particle size (0.1 mm in [29, 33] vs. 1.25 mm).
Based on the insights from simulations, a modified expression of Eq. 1 is proposed as
$$\begin{aligned} G_{max}=Bf(e)h(p')g(CN), \end{aligned}$$
(9)
where B is a constant parameter, f(e) is given by Eq. 2 and \(h(p')=p'^{1/3}\) as discussed above. g(CN) is a power law function of the coordination number given by:
$$\begin{aligned} g(CN)=(CN-\beta )^\alpha , \end{aligned}$$
(10)
where \(\beta =4.5\) is the value of CN at the so-called jamming point [34], \(B=21.14\) and \(\alpha =0.45\) are parameters obtained by fitting the collection of data in Fig. 11. Equation 9 describes \(G_{max}\) with good accuracy in terms of void ratio, pressure and coordination number, with a maximum scatter between the fitting line and the data of \(10\%\) (see the grey zone in Fig. 11). Equation 9 and Fig. 10 summarise the striking result of the work: for isotropic and axisymmetric anisotropic granular materials, the scalar coordination number CN is the main missing ingredient to correct the relation between shear stiffness, stress and void ratio over anisotropic stress states. This is counter-intuitive, as one would expect the fabric tensor to play an important role. However, the evidence in the present work shows that the shear stiffness depends directly on the average number of contacts per particle and its evolution over different stress paths. The orientation of contacts, as described by the fabric tensor, seems to play secondary effects, e.g. reduce the standard deviation in Fig. 11, at least in our range of observations. The present work adheres to Hardin’s idea to adopt only isotropic quantities (average stress in Eq. 1) and neglect deviatoric ones in the description of \(G_{max}\). A similar approach is followed here yet extended to micro-mechanics.
The relation given in Eq. 9 has a bifold impact. Using for example micro-CT scan [15] the average coordination number can be mesured in real samples and included in Eqs. 9 and 10 to predict the value of \(G_{max}\). As an opposite, very interesting approach, Eq. 9 can be used for a back analysis. Once the particle characteristics are known, laboratory experiments can be performed to measure \(G_{max}\) (via resonant column tests as in this case or wave propagation) and the coordination number can be inferred by inverting Eq. 9. The micro-structure paramter can finally inform a micro mechanically-based constitutive relation to predict the material behaviour under different stress paths, in both elastic and elastic–plastic regimes.

5 Conclusions and outlook

An experimental study was performed using the resonant column device to assess the effect of the stress state along various stress paths on the maximum shear modulus of glass beads samples. The results showed that the maximum shear modulus strongly depends on the direction of the applied stress. The analysis of data revealed that the fitting parameters of Hardin’s and Roeslor’s relations depend on the specific stress path and especially fail to predict \(G_{max}\) for triaxial tests at high pressure and deviatoric stress.
DEM simulations were conducted on numerical packings resembling the RC experiments to explain these observations from a micro-structure point of view. DEM results revealed that the coordination number, CN, is significantly affected by the method of sample preparation in a very similar fashion as the shear modulus \(G_{max}\). It was concluded that the sample preparation affects the micro-structure of the sample and, in turn, the shear modulus. The coordination emerged as a valuable descriptor of the stress history for both isotropic and anisotropic stress conditions.
A modified version of Hardin’s classical expression was proposed to include the role of the sample preparation in the description of maximum shear stiffness. The new relation is able to capture the behaviour of \(G_{max}\) on a wide set of isotropic and anisotropic (axisymmetric) stress paths as function of void ratio, pressure and coordination number.
Glass particles were used in our experiment, in order to eliminate complex effects related to mineralogy, size and shape of the particles, thus facilitate experimental repeatability and interpretation of results. With such assumptions, the role of CN was found to be prominent. Further research is desirable to assess the effect of particles shape and mineralogy typical of granular soils. Moreover, it is expected that the additional effect associated to fabric will become important when dealing with non-axisymmetric stress paths, where formulations more complex will be eventually needed.

Acknowledgements

We would like to pay our gratitude and respects to our coauthor Prof. Tom Schanz, who proposed and initiated this research collaboration between Ruhr-Universität Bochum and University of Twente. Prof. Schanz passed away in October 2017, while the team was drafting this paper. The authors believe that the content of the paper, as presented here, is in line with his scientific view on the topic.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Angnolin I, Roux JN (2007) Internal states of model isotropic granular packings. III. Elastic properties. Phys Rev E 76:061304MathSciNet Angnolin I, Roux JN (2007) Internal states of model isotropic granular packings. III. Elastic properties. Phys Rev E 76:061304MathSciNet
2.
Zurück zum Zitat Bellotti R, Jamiolkowski M, Lo Presti DC, O’Neill DA (1996) Anisotropy of small strain stiffness in ticino sand. Géotechnique 46:115–131 Bellotti R, Jamiolkowski M, Lo Presti DC, O’Neill DA (1996) Anisotropy of small strain stiffness in ticino sand. Géotechnique 46:115–131
3.
Zurück zum Zitat Burland JB (1989) Small is beautiful: the stiffness of soils at small strains. Can Geotech J 26:499–516 Burland JB (1989) Small is beautiful: the stiffness of soils at small strains. Can Geotech J 26:499–516
4.
Zurück zum Zitat Chen Y, Ishibashi I, Jenkins J (1988) Dynamic shear modulus and fabric: part I, depositional and induced anisotropy. Géotechnique 38:25–32 Chen Y, Ishibashi I, Jenkins J (1988) Dynamic shear modulus and fabric: part I, depositional and induced anisotropy. Géotechnique 38:25–32
5.
Zurück zum Zitat Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65 Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65
6.
Zurück zum Zitat Drnevich VP (1978) Resonant-column testing: problems and solutions. Dyn Geotech Test 654:384–398 Drnevich VP (1978) Resonant-column testing: problems and solutions. Dyn Geotech Test 654:384–398
7.
Zurück zum Zitat Einav I, Puzrin AM (2004) Pressure dependent elasticity andenergy conservation in elastoplastic models for soils. Geotech Geoenviron Eng 130:81–92 Einav I, Puzrin AM (2004) Pressure dependent elasticity andenergy conservation in elastoplastic models for soils. Geotech Geoenviron Eng 130:81–92
8.
Zurück zum Zitat Ezaoui A, Di Benedetto H (2009) Experimental measurements of the global anisotropic elastic behavior of dry hostun sand during triaxial tests, and the effect of sample preparation. Géotechnique 59:621–635 Ezaoui A, Di Benedetto H (2009) Experimental measurements of the global anisotropic elastic behavior of dry hostun sand during triaxial tests, and the effect of sample preparation. Géotechnique 59:621–635
9.
Zurück zum Zitat Fioravante V (2000) Anisotropy of small strain stiffness of ticino and kenya sands from seismic wave propagation measured in triaxial testing. Soils Found 40:129–142 Fioravante V (2000) Anisotropy of small strain stiffness of ticino and kenya sands from seismic wave propagation measured in triaxial testing. Soils Found 40:129–142
10.
Zurück zum Zitat Goddard J (1990) Nonlinear elasticity and pressure-dependent wavespeeds in granular media. Proc R Soc Lond 430:105–131MATH Goddard J (1990) Nonlinear elasticity and pressure-dependent wavespeeds in granular media. Proc R Soc Lond 430:105–131MATH
11.
Zurück zum Zitat Goudarzy M (2015) Micro and macro mechanical assessment of small and intermediate strain properties of granular materials. Ph.D. thesis, Faculty of Civil Egineering Ruhr Universität Bochum Goudarzy M (2015) Micro and macro mechanical assessment of small and intermediate strain properties of granular materials. Ph.D. thesis, Faculty of Civil Egineering Ruhr Universität Bochum
12.
Zurück zum Zitat Goudarzy M, König D, Santamarina JC, Schanz T (2018) The influence of the anisotropic stress state on the intermediate strain properties of granular material. Géotechnique 68:221–232 Goudarzy M, König D, Santamarina JC, Schanz T (2018) The influence of the anisotropic stress state on the intermediate strain properties of granular material. Géotechnique 68:221–232
13.
Zurück zum Zitat Goudarzy M, König D, Schanz T (2016) Small strain stiffness of granular materials containing fines. Soils Found 56:756–764 Goudarzy M, König D, Schanz T (2016) Small strain stiffness of granular materials containing fines. Soils Found 56:756–764
14.
Zurück zum Zitat Goudarzy M, König D, Schanz T (2018) Interpretation of small and intermediate strain characteristics of Hostun sand for various stress states. Soils Found 58:15261537 Goudarzy M, König D, Schanz T (2018) Interpretation of small and intermediate strain characteristics of Hostun sand for various stress states. Soils Found 58:15261537
15.
Zurück zum Zitat Goudarzy M, Rahman M, König D, Schanz T (2016b) Influence of non-plastic fine particles on maximum shear modulus of granular materials. Soils Found 56:973–983 Goudarzy M, Rahman M, König D, Schanz T (2016b) Influence of non-plastic fine particles on maximum shear modulus of granular materials. Soils Found 56:973–983
16.
Zurück zum Zitat Gu Q, König D, Goudarzy M (2020) Influence of the sample preparation on the mechanical characteristics of Hostun sand. Geotech Eng J SEAGS AGSSEA 51:1526–1537 Gu Q, König D, Goudarzy M (2020) Influence of the sample preparation on the mechanical characteristics of Hostun sand. Geotech Eng J SEAGS AGSSEA 51:1526–1537
17.
Zurück zum Zitat Gu X, Yang J, Huang M, Gau G (2015) Bender element tests in dry and saturated sand: signal interpretation and result comparison. J Soils Found 55:951–962 Gu X, Yang J, Huang M, Gau G (2015) Bender element tests in dry and saturated sand: signal interpretation and result comparison. J Soils Found 55:951–962
18.
Zurück zum Zitat Gu XQ, Yang J (2013) A discrete element analysis of elastic properties of granular materials. Granular Matter 15:139–148 Gu XQ, Yang J (2013) A discrete element analysis of elastic properties of granular materials. Granular Matter 15:139–148
19.
Zurück zum Zitat Guo N, Zhao J (2013) The signature of shear-induced anisotropy in granular media. Comput Geotech 47:1–15MathSciNet Guo N, Zhao J (2013) The signature of shear-induced anisotropy in granular media. Comput Geotech 47:1–15MathSciNet
20.
Zurück zum Zitat Hardin BO, Black WL (1966) Sand stiffness under various triaxial stresses. Soils Mech Found Div 92:27–42 Hardin BO, Black WL (1966) Sand stiffness under various triaxial stresses. Soils Mech Found Div 92:27–42
21.
Zurück zum Zitat Hardin BO, Drnevich VP (1972) Shear modulus and damping in soils: design equations and curves. Soil Mech Found Div 98:667–692 Hardin BO, Drnevich VP (1972) Shear modulus and damping in soils: design equations and curves. Soil Mech Found Div 98:667–692
22.
Zurück zum Zitat Hardin BO, Drnevich VP (1972) Shear modulus and damping in soils measurment and parameter effects. Soils Mech Found Div 98:603–624 Hardin BO, Drnevich VP (1972) Shear modulus and damping in soils measurment and parameter effects. Soils Mech Found Div 98:603–624
23.
Zurück zum Zitat Houlsby GT, Amorosi A, Rojas E (2005) Elastic moduli of soils dependent on pressure: a hyperelastic formulation. Géotechnique 55:383–392 Houlsby GT, Amorosi A, Rojas E (2005) Elastic moduli of soils dependent on pressure: a hyperelastic formulation. Géotechnique 55:383–392
24.
Zurück zum Zitat Ishibashi I, Chen Y, Jenkins J (1988) Dynamic shear modulus and fabric: part II, stress reversal. Géotechnique 38:33–37 Ishibashi I, Chen Y, Jenkins J (1988) Dynamic shear modulus and fabric: part II, stress reversal. Géotechnique 38:33–37
25.
Zurück zum Zitat Ishibashi I, Chen YC, Chen MT (1991) anisotropic behavior of ottawa sand in comparison with glass spheres. Soils Found 31:145–155 Ishibashi I, Chen YC, Chen MT (1991) anisotropic behavior of ottawa sand in comparison with glass spheres. Soils Found 31:145–155
26.
Zurück zum Zitat Jamiolkowski M, Lancellotta R, Lo Presti D (1995) Remarks on the stiffness at small strains of six italian clays. Pre-failure Deformat Geomater 1:817–836 Jamiolkowski M, Lancellotta R, Lo Presti D (1995) Remarks on the stiffness at small strains of six italian clays. Pre-failure Deformat Geomater 1:817–836
27.
Zurück zum Zitat Kruyt N, Rothenburg L (2002) Micromechanical bounds for the effective elastic moduli of granular materials. Int J Solids Struct 39:311–324MATH Kruyt N, Rothenburg L (2002) Micromechanical bounds for the effective elastic moduli of granular materials. Int J Solids Struct 39:311–324MATH
28.
Zurück zum Zitat Kumar N, Luding S, Magnanimo V (2014) Macroscopic model with anisotropy based on micro-macro information. Acta Mech 225:2319–2343MathSciNetMATH Kumar N, Luding S, Magnanimo V (2014) Macroscopic model with anisotropy based on micro-macro information. Acta Mech 225:2319–2343MathSciNetMATH
29.
Zurück zum Zitat La Ragione L, Magnanimo V (2012) Contact anisotropy and coordination number for a granular assembly: a comparison of DEM simulations and theory. Phys Rev E 85:031304 La Ragione L, Magnanimo V (2012) Contact anisotropy and coordination number for a granular assembly: a comparison of DEM simulations and theory. Phys Rev E 85:031304
30.
Zurück zum Zitat La Ragione L, Magnanimo V (2012) Evaluation of the effective moduli of an anisotropic, dense, granular material. Granular Matter 14(6):749–757 La Ragione L, Magnanimo V (2012) Evaluation of the effective moduli of an anisotropic, dense, granular material. Granular Matter 14(6):749–757
31.
Zurück zum Zitat Lo Presti D, Jamiolkowski M, Pallara O, Cavallaro A, Pedroni S (1997) Shear modulus and damping of soils. Géotechnique 47:603–617 Lo Presti D, Jamiolkowski M, Pallara O, Cavallaro A, Pedroni S (1997) Shear modulus and damping of soils. Géotechnique 47:603–617
32.
Zurück zum Zitat Love AEH (1955) A treatise on the mathematical theory of elasticity, 4th edn. Dover, Downers Grove Love AEH (1955) A treatise on the mathematical theory of elasticity, 4th edn. Dover, Downers Grove
33.
Zurück zum Zitat Magnanimo V, La Ragione L, Jenkins JT, Wang P, Makse HA (2008) Characterizing the shear and bulk moduli of an idealized granular material. Europhys Lett 81:34006 Magnanimo V, La Ragione L, Jenkins JT, Wang P, Makse HA (2008) Characterizing the shear and bulk moduli of an idealized granular material. Europhys Lett 81:34006
34.
Zurück zum Zitat Makse H, Gland N, Johnson D, Schwartz L (1999) Why effective medium theory fails in granular materials. Phys Rev Lett 83:5070–5073 Makse H, Gland N, Johnson D, Schwartz L (1999) Why effective medium theory fails in granular materials. Phys Rev Lett 83:5070–5073
35.
Zurück zum Zitat Ng CWW, Xu J, Yung SY (2009) Effects of wetting-drying and stress ratio on anisotropic stiffness of an unsaturated soil at very small strains. Can Geotech J 46:1062–1076 Ng CWW, Xu J, Yung SY (2009) Effects of wetting-drying and stress ratio on anisotropic stiffness of an unsaturated soil at very small strains. Can Geotech J 46:1062–1076
36.
Zurück zum Zitat Oda M (1972) Initial fabric and their relations to mechanical properties of granular material. Soils Found 12:17–36 Oda M (1972) Initial fabric and their relations to mechanical properties of granular material. Soils Found 12:17–36
37.
Zurück zum Zitat O’Donovan J, Marketos G, O’Sullivan C (2014) Novel methods of bender element test interpretation. In: Geomechanics from micro to macro proceedings of IS—Cambridge O’Donovan J, Marketos G, O’Sullivan C (2014) Novel methods of bender element test interpretation. In: Geomechanics from micro to macro proceedings of IS—Cambridge
38.
Zurück zum Zitat Payan M, Khoshghalb A, Senetakis K, Khalili N (2016) Small-strain stiffness of sand subjected to stress anisotropy. Soil Dyn Earthq Eng 88:143–151 Payan M, Khoshghalb A, Senetakis K, Khalili N (2016) Small-strain stiffness of sand subjected to stress anisotropy. Soil Dyn Earthq Eng 88:143–151
39.
Zurück zum Zitat Rahman M, Cubrinovski M, Lo S (2012) Initial shear modulus of sandy soils and equivalent granular void ratio. Geomech Geoeng 7:219–226 Rahman M, Cubrinovski M, Lo S (2012) Initial shear modulus of sandy soils and equivalent granular void ratio. Geomech Geoeng 7:219–226
40.
Zurück zum Zitat Roesler S (1979) Anisotropic shear modulus due to stress anisotropy. J Geotech Eng Div 105:871–880 Roesler S (1979) Anisotropic shear modulus due to stress anisotropy. J Geotech Eng Div 105:871–880
41.
Zurück zum Zitat Rothenburg L, Bathurst RJ (1989) Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39:601–614 Rothenburg L, Bathurst RJ (1989) Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39:601–614
42.
Zurück zum Zitat Sadek T (2006) The multiaxial behavior and elastic stiffness of Hostun sand. Ph.D. thesis, University of Bristol Sadek T (2006) The multiaxial behavior and elastic stiffness of Hostun sand. Ph.D. thesis, University of Bristol
43.
Zurück zum Zitat Santamarina C, Cascante G (1996) Stress anisotropy and wave propagation: a micromechanical view. Can Geotech J 33:770–782 Santamarina C, Cascante G (1996) Stress anisotropy and wave propagation: a micromechanical view. Can Geotech J 33:770–782
44.
Zurück zum Zitat Seed B, Wong R, Idriss I, Tokimatsu K (1984) Moduli and damping factors for dynamic analyses of cohesionless soils. Tech. rep., National science foundation Seed B, Wong R, Idriss I, Tokimatsu K (1984) Moduli and damping factors for dynamic analyses of cohesionless soils. Tech. rep., National science foundation
45.
Zurück zum Zitat Strack ODL, Cundall PA (1984) Fundamental studies of fabric in granular material. Tech. rep., Department of civil engineering university of Minnesota, Minneapolis Strack ODL, Cundall PA (1984) Fundamental studies of fabric in granular material. Tech. rep., Department of civil engineering university of Minnesota, Minneapolis
46.
Zurück zum Zitat Tatsuoka F, Iwasaki T, Fukushima S, Sudo H (1979) Stress conditions and stress histories affecting shear modulus and damping of sand under cyclic loading. Soils Found 19:30–43 Tatsuoka F, Iwasaki T, Fukushima S, Sudo H (1979) Stress conditions and stress histories affecting shear modulus and damping of sand under cyclic loading. Soils Found 19:30–43
47.
Zurück zum Zitat Tatsuoka F, Iwasaki T, Takagi Y (1978) Hysteretic damping of sands under cyclic loading and its relation to shear modulus. Soils Found 18:26–39 Tatsuoka F, Iwasaki T, Takagi Y (1978) Hysteretic damping of sands under cyclic loading and its relation to shear modulus. Soils Found 18:26–39
48.
Zurück zum Zitat Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50:43–53 Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50:43–53
49.
Zurück zum Zitat Viggiani G, Atkinson JH (1995) Stiffness of fine-grained soil at very small strains. Géotechnique 45:249–265 Viggiani G, Atkinson JH (1995) Stiffness of fine-grained soil at very small strains. Géotechnique 45:249–265
50.
Zurück zum Zitat Walton K (1987) The effective elastic moduli of a random packing of spheres. J Mech Phys Solids 35:213–226MATH Walton K (1987) The effective elastic moduli of a random packing of spheres. J Mech Phys Solids 35:213–226MATH
51.
Zurück zum Zitat Wang Y, Mok C (2008) Mechanisms of small strain shear modulus anisotropy in soils. J Geotech Geoenviron Eng 134:1516–1530 Wang Y, Mok C (2008) Mechanisms of small strain shear modulus anisotropy in soils. J Geotech Geoenviron Eng 134:1516–1530
52.
Zurück zum Zitat Wichtmann T, Triantafyllidis T (2009) On the influence of the grain size distribution curve of quartz sand on the small strain shear modulus. J Geotech Geoenviron Eng 135:1404–1418 Wichtmann T, Triantafyllidis T (2009) On the influence of the grain size distribution curve of quartz sand on the small strain shear modulus. J Geotech Geoenviron Eng 135:1404–1418
53.
Zurück zum Zitat Yanagisawa E (1983) Influence of void ratio and stress condition on the dynamic shear modulus of granular media. Adv Mech Flow Gran Mater 2:947–960 Yanagisawa E (1983) Influence of void ratio and stress condition on the dynamic shear modulus of granular media. Adv Mech Flow Gran Mater 2:947–960
54.
Zurück zum Zitat Yu P, Richart F (1984) Stress ratio effects on shear modulus of dry sands. J Geotech Eng 110:331–345 Yu P, Richart F (1984) Stress ratio effects on shear modulus of dry sands. J Geotech Eng 110:331–345
55.
Zurück zum Zitat Zeng X, Ni B (1999) Stress-induced anisotropic Gmax of sands and its measurement. J Geotech Geoenviron Eng 125:741–749 Zeng X, Ni B (1999) Stress-induced anisotropic Gmax of sands and its measurement. J Geotech Geoenviron Eng 125:741–749
Metadaten
Titel
Anisotropic stress state and small strain stiffness in granular materials: RC experiments and DEM simulations
verfasst von
Meisam Goudarzy
Vanessa Magnanimo
Diethard König
Tom Schanz
Publikationsdatum
07.10.2020
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 10/2020
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-020-01229-8

Weitere Artikel der Ausgabe 10/2020

Meccanica 10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.