Skip to main content
Erschienen in: Journal of Coatings Technology and Research 4/2019

20.02.2019

Anticorrosion and barrier properties appraisal of poly(dimethylsiloxane)–ZnO nanocoating transition from superhydrophobic to hydrophobic state

verfasst von: Innocent O. Arukalam, Ying Li

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The anticorrosion and barrier properties of poly(dimethylsiloxane) (PDMS)–ZnO nanocoating transition from superhydrophobic to hydrophobic state have been evaluated. The main objective was to appraise the durability performance of anticorrosion and barrier properties of the pristine superhydrophobic coating and its hydrophobic state after long-term exposure to marine water. Thus, water wettability, surface features, and corrosion resistance, as well as barrier performance of the 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane-modified PDMS–ZnO coating were evaluated after 15 cycles (1 h to 60 days) of immersion in 3.5 wt.% NaCl solution. The evaluations were made by use of surface analytical, physicochemical, and electrochemical techniques. The results show that the coating transformed from superhydrophobic state (after 1 h) to hydrophobic state (after 60 days). The transition was due to effect of corrosiveness of the salty water and disappearance of the surface air layer with consequent reduction in the surface roughness and increase in the porosity of the coating. Correspondingly, the value of the impedance modulus decreased from 4.257 × 109 Ω cm2 (after 1 h) to 7.175 × 108 Ω cm2 (after 60 days). The trend of coating film (Rcf) and charge transfer (Rct) resistances with immersion time was found to be somewhat stable after 40-day immersion time. The observed high values of impedance modulus (|Z|f=0.01 Hz), Rcf and Rct after 60 days of immersion clearly demonstrate that the anticorrosion property and barrier performance of the transformed hydrophobic PDMS–ZnO coating were good.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xin, B, Hao, J, “Superhydrophobic Self-Assembled Monolayers of Long-Chain Fluorinated Imidazolium Ionic Liquids.” RSC Adv., 2 5141–5146 (2012)CrossRef Xin, B, Hao, J, “Superhydrophobic Self-Assembled Monolayers of Long-Chain Fluorinated Imidazolium Ionic Liquids.” RSC Adv., 2 5141–5146 (2012)CrossRef
2.
Zurück zum Zitat Steele, A, Bayer, I, Moran, S, Cannon, A, King, WP, Loth, E, “Conformal ZnO Nanocomposite Coatings on Micro-patterned Surfaces for Superhydrophobicity.” Thin Solid Films, 518 5426–5431 (2010)CrossRef Steele, A, Bayer, I, Moran, S, Cannon, A, King, WP, Loth, E, “Conformal ZnO Nanocomposite Coatings on Micro-patterned Surfaces for Superhydrophobicity.” Thin Solid Films, 518 5426–5431 (2010)CrossRef
3.
Zurück zum Zitat Basu, BJ, Dinesh Kumar, V, Fabrication of Superhydrophobic Nanocomposite Coatings Using Polytetrafluoroethylene and Silica Nanoparticles. ISRN Nanotechnol. ArticleID 803910 (2011). Basu, BJ, Dinesh Kumar, V, Fabrication of Superhydrophobic Nanocomposite Coatings Using Polytetrafluoroethylene and Silica Nanoparticles. ISRN Nanotechnol. ArticleID 803910 (2011).
4.
Zurück zum Zitat Chakradhara, RPS, Dinesh Kumara, V, Rao, JL, Basu, BJ, “Fabrication of Superhydrophobic Surfaces Based on ZnO–PDMS Nanocomposite Coatings and Study of Its Wetting Behavior.” Appl. Surface Sci., 257 8569–8575 (2011)CrossRef Chakradhara, RPS, Dinesh Kumara, V, Rao, JL, Basu, BJ, “Fabrication of Superhydrophobic Surfaces Based on ZnO–PDMS Nanocomposite Coatings and Study of Its Wetting Behavior.” Appl. Surface Sci., 257 8569–8575 (2011)CrossRef
5.
Zurück zum Zitat Privet, BJ, Young, J, Hong, SA, Lee, J, Han, J, Shin, JH, Schoenfisch, MH, “Antibacterial Fluorinated Silica Colloid Superhydrophobic Surfaces.” Langmuir, 27 (15) 9597–9601 (2011)CrossRef Privet, BJ, Young, J, Hong, SA, Lee, J, Han, J, Shin, JH, Schoenfisch, MH, “Antibacterial Fluorinated Silica Colloid Superhydrophobic Surfaces.” Langmuir, 27 (15) 9597–9601 (2011)CrossRef
6.
Zurück zum Zitat Neelakantan, NK, Weisensee, PB, Overcash, JW, Torrealba, EJ, King, WP, Suslick, KS, “Spray-on Omniphobic ZnO Coatings.” RSC Adv., 5 69243–69250 (2015)CrossRef Neelakantan, NK, Weisensee, PB, Overcash, JW, Torrealba, EJ, King, WP, Suslick, KS, “Spray-on Omniphobic ZnO Coatings.” RSC Adv., 5 69243–69250 (2015)CrossRef
7.
Zurück zum Zitat Arukalam, IO, Oguzie, EE, Li, Y, “Nanostructured Superhydrophobic Polysiloxane Coating for High Barrier and Anticorrosion Applications in Marine Environment.” J. Colloid Interface Sci., 512 674–685 (2018)CrossRef Arukalam, IO, Oguzie, EE, Li, Y, “Nanostructured Superhydrophobic Polysiloxane Coating for High Barrier and Anticorrosion Applications in Marine Environment.” J. Colloid Interface Sci., 512 674–685 (2018)CrossRef
8.
Zurück zum Zitat Wang, G, Zeng, Z, Wang, H, Zhang, L, Sun, X, He, Y, Li, L, Wu, X, Ren, T, Xue, Q, “Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.” ACS Appl. Mater. Interfaces, 7 (47) 26184–26194 (2015)CrossRef Wang, G, Zeng, Z, Wang, H, Zhang, L, Sun, X, He, Y, Li, L, Wu, X, Ren, T, Xue, Q, “Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.” ACS Appl. Mater. Interfaces, 7 (47) 26184–26194 (2015)CrossRef
9.
Zurück zum Zitat Wang, G, Zeng, Z, Chen, J, Xu, M, Hu, J, Liu, S, Ren, T, Xue, Q, “Ultra Low Water Adhesive Metal Surface for Enhanced Corrosion Protection.” RSC Adv., 6 40641–40649 (2016)CrossRef Wang, G, Zeng, Z, Chen, J, Xu, M, Hu, J, Liu, S, Ren, T, Xue, Q, “Ultra Low Water Adhesive Metal Surface for Enhanced Corrosion Protection.” RSC Adv., 6 40641–40649 (2016)CrossRef
10.
Zurück zum Zitat Ammar, Sh, Ramesh, K, Vengadaesvaran, B, Ramesh, S, Arof, AK, “Amelioration of Anticorrosion and Hydrophobic Properties of Epoxy/PDMS Composite Coatings Containing Nano ZnO Particles.” Progr. Org. Coat., 92 54–65 (2016)CrossRef Ammar, Sh, Ramesh, K, Vengadaesvaran, B, Ramesh, S, Arof, AK, “Amelioration of Anticorrosion and Hydrophobic Properties of Epoxy/PDMS Composite Coatings Containing Nano ZnO Particles.” Progr. Org. Coat., 92 54–65 (2016)CrossRef
11.
Zurück zum Zitat Heinonen, S, Nikkanen, JP, Laakso, J, Raulio, M, Priha, O, Levanen, E, “Bacterial Growth on a Superhydrophobic Surface Containing Silver Nanoparticles.” Mater. Sci. Eng., 47 012064 (2013) Heinonen, S, Nikkanen, JP, Laakso, J, Raulio, M, Priha, O, Levanen, E, “Bacterial Growth on a Superhydrophobic Surface Containing Silver Nanoparticles.” Mater. Sci. Eng., 47 012064 (2013)
12.
Zurück zum Zitat You, I, Seo, YC, Lee, H, “Material-Independent Fabrication of Superhydrophobic Surfaces by Mussel-Inspired Polydopamine.” RSC Adv., 4 10330–10333 (2014)CrossRef You, I, Seo, YC, Lee, H, “Material-Independent Fabrication of Superhydrophobic Surfaces by Mussel-Inspired Polydopamine.” RSC Adv., 4 10330–10333 (2014)CrossRef
13.
Zurück zum Zitat Qian, H, Xu, D, Du, C, Zhang, D, Li, X, Huang, L, Deng, L, Tu, Y, Mol, JMC, Terryn, HA, “Dual-Action Smart Coatings with a Self-Healing Superhydrophobic Surface and Anti-corrosion Properties.” J. Mater. Chem. A, 5 2355–2364 (2017)CrossRef Qian, H, Xu, D, Du, C, Zhang, D, Li, X, Huang, L, Deng, L, Tu, Y, Mol, JMC, Terryn, HA, “Dual-Action Smart Coatings with a Self-Healing Superhydrophobic Surface and Anti-corrosion Properties.” J. Mater. Chem. A, 5 2355–2364 (2017)CrossRef
14.
Zurück zum Zitat Qian, H, Li, M, Li, Z, Lou, Y, Huang, L, Zhang, D, Xu, D, Du, C, Lu, L, Gao, J, “Mussel-Inspired Superhydrophobic Surfaces with Enhanced Corrosion Resistance and Dual-Action Antibacterial Properties.” Mater. Sci. Eng. C, 80 566–577 (2017)CrossRef Qian, H, Li, M, Li, Z, Lou, Y, Huang, L, Zhang, D, Xu, D, Du, C, Lu, L, Gao, J, “Mussel-Inspired Superhydrophobic Surfaces with Enhanced Corrosion Resistance and Dual-Action Antibacterial Properties.” Mater. Sci. Eng. C, 80 566–577 (2017)CrossRef
15.
Zurück zum Zitat Mahalakshmi, PV, Vanithakumari, SC, Gopal, J, Kamachi Mudali, U, Raj, B, “Enhancing Corrosion and Biofouling Resistance Through Superhydrophobic Surface Modification.” Curr. Sci., 101 (10) 1328–1336 (2011) Mahalakshmi, PV, Vanithakumari, SC, Gopal, J, Kamachi Mudali, U, Raj, B, “Enhancing Corrosion and Biofouling Resistance Through Superhydrophobic Surface Modification.” Curr. Sci., 101 (10) 1328–1336 (2011)
16.
Zurück zum Zitat Zhang, D, Wang, L, Qian, H, Li, X, “Superhydrophobic Surfaces for Corrosion Protection: A Review of Recent Progresses and Future Directions.” J. Coat. Technol. Res., 13 (1) 11–29 (2016)CrossRef Zhang, D, Wang, L, Qian, H, Li, X, “Superhydrophobic Surfaces for Corrosion Protection: A Review of Recent Progresses and Future Directions.” J. Coat. Technol. Res., 13 (1) 11–29 (2016)CrossRef
17.
Zurück zum Zitat Ault, J, Lockwood, P, Cloutier, R, Kinee, D, “Use of Polysiloxane Coatings for Topside Applications on US Navy Ships.” Naval Eng. J., 128 (1) 65–70 (2016) Ault, J, Lockwood, P, Cloutier, R, Kinee, D, “Use of Polysiloxane Coatings for Topside Applications on US Navy Ships.” Naval Eng. J., 128 (1) 65–70 (2016)
18.
Zurück zum Zitat Basu, BJ, Bharathidasan, T, Anandan, C, “Superhydrophobic Oleophobic PDMS-Silica Nanocomposite Coating.” Surf. Innov., 1 (S11) 40–51 (2013)CrossRef Basu, BJ, Bharathidasan, T, Anandan, C, “Superhydrophobic Oleophobic PDMS-Silica Nanocomposite Coating.” Surf. Innov., 1 (S11) 40–51 (2013)CrossRef
19.
Zurück zum Zitat Yuan, Z, Bin, J, Wang, X, Wang, M, Huang, J, Peng, C, Xing, S, Xiao, J, Zeng, J, Xiao, X, Fu, X, “Preparation of a Polydimethylsiloxane (PDMS)/CaCO3 Based Superhydrophobic Coating.” Surf. Coat. Technol., 254 97–103 (2014)CrossRef Yuan, Z, Bin, J, Wang, X, Wang, M, Huang, J, Peng, C, Xing, S, Xiao, J, Zeng, J, Xiao, X, Fu, X, “Preparation of a Polydimethylsiloxane (PDMS)/CaCO3 Based Superhydrophobic Coating.” Surf. Coat. Technol., 254 97–103 (2014)CrossRef
20.
Zurück zum Zitat Jerschow, P, “Silicone Elastomers.” Rapra Rev. Rep., 12 (5) 171 (2001) Jerschow, P, “Silicone Elastomers.” Rapra Rev. Rep., 12 (5) 171 (2001)
21.
Zurück zum Zitat Manca, M, Cannavale, A, De Marco, L, Aricò, AS, Cingolani, R, Gigli, G, “Durable Superhydrophobic and Antireflective Surfaces by Trimethylsilanized Silica Nanoparticles-Based Sol–Gel Processing.” Langmuir, 25 (11) 6357–6362 (2009)CrossRef Manca, M, Cannavale, A, De Marco, L, Aricò, AS, Cingolani, R, Gigli, G, “Durable Superhydrophobic and Antireflective Surfaces by Trimethylsilanized Silica Nanoparticles-Based Sol–Gel Processing.” Langmuir, 25 (11) 6357–6362 (2009)CrossRef
22.
Zurück zum Zitat Zhang, D, Wang, L, Qian, H, Li, X, “Superhydrophobic Surfaces for Corrosion Protection: A Review of Recent Progresses and Future Directions.” J. Coat. Technol. Res., 13 (1) 11–29 (2016)CrossRef Zhang, D, Wang, L, Qian, H, Li, X, “Superhydrophobic Surfaces for Corrosion Protection: A Review of Recent Progresses and Future Directions.” J. Coat. Technol. Res., 13 (1) 11–29 (2016)CrossRef
23.
Zurück zum Zitat Zhang, J, Pu, G, Severtson, SJ, “Fabrication of Zinc Oxide/Polydimethylsiloxane Composite Surfaces Demonstrating Oil-Fouling-Resistant Superhydrophobicity.” ACS Appl. Mater. Interfaces, 2 (10) 2880–2883 (2010)CrossRef Zhang, J, Pu, G, Severtson, SJ, “Fabrication of Zinc Oxide/Polydimethylsiloxane Composite Surfaces Demonstrating Oil-Fouling-Resistant Superhydrophobicity.” ACS Appl. Mater. Interfaces, 2 (10) 2880–2883 (2010)CrossRef
24.
Zurück zum Zitat Arukalam, IO, Meng, MJ, Xiao, HG, Ma, YT, Li, Y, “Effect of Perfluorodecyltrichlorosilane on the Surface Properties and Anti-corrosion Behavior of Poly(dimethylsiloxane)–ZnO Coatings.” Appl. Surf. Sci., 433 1113–1127 (2018)CrossRef Arukalam, IO, Meng, MJ, Xiao, HG, Ma, YT, Li, Y, “Effect of Perfluorodecyltrichlorosilane on the Surface Properties and Anti-corrosion Behavior of Poly(dimethylsiloxane)–ZnO Coatings.” Appl. Surf. Sci., 433 1113–1127 (2018)CrossRef
25.
Zurück zum Zitat Su, X, Li, H, Lai, X, Zhang, L, Liang, T, Feng, Y, Zeng, X, “Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.” ACS Appl. Mater. Interfaces, 9 (3) 3131–3141 (2017)CrossRef Su, X, Li, H, Lai, X, Zhang, L, Liang, T, Feng, Y, Zeng, X, “Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.” ACS Appl. Mater. Interfaces, 9 (3) 3131–3141 (2017)CrossRef
26.
Zurück zum Zitat Zhang, ZP, Song, XF, Cui, LY, Qi, YH, “Synthesis of Polydimethylsiloxane-Modified Polyurethane and the Structure and Properties of Its Antifouling Coatings.” Coatings, 8 157 (2018)CrossRef Zhang, ZP, Song, XF, Cui, LY, Qi, YH, “Synthesis of Polydimethylsiloxane-Modified Polyurethane and the Structure and Properties of Its Antifouling Coatings.” Coatings, 8 157 (2018)CrossRef
27.
Zurück zum Zitat Fini, EH, Al-Qadi, IL, Abu-Lebdeh, T, Masson, JF, “Use of Surface Energy to evaluate Adhesion of Bituminous Crack Sealants to Aggregates.” Am. J. Eng. Appl. Sci., 4 (2) 244–251 (2011)CrossRef Fini, EH, Al-Qadi, IL, Abu-Lebdeh, T, Masson, JF, “Use of Surface Energy to evaluate Adhesion of Bituminous Crack Sealants to Aggregates.” Am. J. Eng. Appl. Sci., 4 (2) 244–251 (2011)CrossRef
28.
Zurück zum Zitat Papadopoulos, P, Mammen, L, Deng, X, Vollmer, D, Butt, HJ, “How Superhydrophobicity Breaks Down.” PNAS, 110 (9) 3254–3258 (2013)CrossRef Papadopoulos, P, Mammen, L, Deng, X, Vollmer, D, Butt, HJ, “How Superhydrophobicity Breaks Down.” PNAS, 110 (9) 3254–3258 (2013)CrossRef
29.
Zurück zum Zitat Yao, X, Chen, Q, Xu, L, Li, Q, Song, Y, Gao, X, Quéré, D, Jiang, L, “Bioinspired Ribbed Nanoneedles with Robust Superhydrophobicity.” Adv. Funct. Mater., 20 (4) 656–662 (2010)CrossRef Yao, X, Chen, Q, Xu, L, Li, Q, Song, Y, Gao, X, Quéré, D, Jiang, L, “Bioinspired Ribbed Nanoneedles with Robust Superhydrophobicity.” Adv. Funct. Mater., 20 (4) 656–662 (2010)CrossRef
30.
Zurück zum Zitat Bormashenko, E, Pogreb, R, Whyman, G, Erlich, M, “Cassie–Wenzel Wetting Transition in Vibrating Drops Deposited on Rough Surfaces: Is the Dynamic Cassie–Wenzel Wetting Transition a 2D or 1D Affair?” Langmuir, 23 (12) 6501–6503 (2007)CrossRef Bormashenko, E, Pogreb, R, Whyman, G, Erlich, M, “Cassie–Wenzel Wetting Transition in Vibrating Drops Deposited on Rough Surfaces: Is the Dynamic Cassie–Wenzel Wetting Transition a 2D or 1D Affair?” Langmuir, 23 (12) 6501–6503 (2007)CrossRef
31.
Zurück zum Zitat Bartolo, D, Bouamrirene, F, Verneuil, É, Buguin, A, Silberzan, P, Moulinet, S, “Bouncing or Sticky Droplets: Impalement Transitions on Superhydrophobic Micropatterned Surfaces.” Europhys. Lett., 74 (2) 299–305 (2006)CrossRef Bartolo, D, Bouamrirene, F, Verneuil, É, Buguin, A, Silberzan, P, Moulinet, S, “Bouncing or Sticky Droplets: Impalement Transitions on Superhydrophobic Micropatterned Surfaces.” Europhys. Lett., 74 (2) 299–305 (2006)CrossRef
32.
Zurück zum Zitat Cassie, ABD, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944)CrossRef Cassie, ABD, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944)CrossRef
33.
Zurück zum Zitat Wenzel, RN, “Resistance of Solid Surfaces to Wetting By Water.” Ind. Eng. Chem., 28 988–994 (1936)CrossRef Wenzel, RN, “Resistance of Solid Surfaces to Wetting By Water.” Ind. Eng. Chem., 28 988–994 (1936)CrossRef
34.
Zurück zum Zitat Nakade, M, Ogawa, M, “Synthesis and Characterization of Zinc Oxide Fine Particles Coated with Titania/PDMS Hybrid.” J. Mater. Sci., 42 4254–4259 (2007)CrossRef Nakade, M, Ogawa, M, “Synthesis and Characterization of Zinc Oxide Fine Particles Coated with Titania/PDMS Hybrid.” J. Mater. Sci., 42 4254–4259 (2007)CrossRef
35.
Zurück zum Zitat Wassilkowska, A, Czaplicka-Kotas, A, Zielina, M, Bielski, A, “An Analysis of the Elemental Composition of Micro-samples Using EDS Technique.” Tech. Trans. Chem., 1 133–148 (2014) Wassilkowska, A, Czaplicka-Kotas, A, Zielina, M, Bielski, A, “An Analysis of the Elemental Composition of Micro-samples Using EDS Technique.” Tech. Trans. Chem., 1 133–148 (2014)
36.
Zurück zum Zitat Arukalam, IO, Oguzie, EE, Li, Y, “Fabrication of FDTS-Modified PDMS–ZnO Nanocomposite Hydrophobic Coating with Anti-fouling Capability for Corrosion Protection of Q235 Steel.” J. Colloid Interface Sci., 484 220–228 (2016)CrossRef Arukalam, IO, Oguzie, EE, Li, Y, “Fabrication of FDTS-Modified PDMS–ZnO Nanocomposite Hydrophobic Coating with Anti-fouling Capability for Corrosion Protection of Q235 Steel.” J. Colloid Interface Sci., 484 220–228 (2016)CrossRef
37.
Zurück zum Zitat Latthe, SS, Imai, H, Ganesan, V, Rao, AV, “Superhydrophobic Silica Films by Sol–Gel Co-precursor Method.” Appl. Surf. Sci., 256 217–222 (2009)CrossRef Latthe, SS, Imai, H, Ganesan, V, Rao, AV, “Superhydrophobic Silica Films by Sol–Gel Co-precursor Method.” Appl. Surf. Sci., 256 217–222 (2009)CrossRef
38.
Zurück zum Zitat Djaja, NF, Montja, DA, Saleh, R, “The Effect of Co Incorporation into ZnO Nanoparticles.” Adv. Mater. Phys. Chem., 3 33–41 (2013)CrossRef Djaja, NF, Montja, DA, Saleh, R, “The Effect of Co Incorporation into ZnO Nanoparticles.” Adv. Mater. Phys. Chem., 3 33–41 (2013)CrossRef
39.
Zurück zum Zitat Birbilis, N, Cavanaugh, MK, Sudholz, AD, Zhu, SM, Easton, MA, Gibson, MA, “A Combined Neural Network and Mechanistic Approach for the Prediction of Corrosion Rate and Yield Strength of Magnesium-Rare Earth Alloys.” Corros. Sci., 53 168–176 (2011)CrossRef Birbilis, N, Cavanaugh, MK, Sudholz, AD, Zhu, SM, Easton, MA, Gibson, MA, “A Combined Neural Network and Mechanistic Approach for the Prediction of Corrosion Rate and Yield Strength of Magnesium-Rare Earth Alloys.” Corros. Sci., 53 168–176 (2011)CrossRef
Metadaten
Titel
Anticorrosion and barrier properties appraisal of poly(dimethylsiloxane)–ZnO nanocoating transition from superhydrophobic to hydrophobic state
verfasst von
Innocent O. Arukalam
Ying Li
Publikationsdatum
20.02.2019
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 4/2019
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-018-00182-2

Weitere Artikel der Ausgabe 4/2019

Journal of Coatings Technology and Research 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.