Skip to main content

2022 | OriginalPaper | Buchkapitel

7. Application of Acoustic Emission for the Inspection of Fiber-Reinforced Composite Materials

verfasst von : Shuncong Zhong, Walter Nsengiyumva

Erschienen in: Nondestructive Testing and Evaluation of Fiber-Reinforced Composite Structures

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although the application of acoustic emission (AE) to the inspection of fiber-reinforced composite materials is highly beneficial due to its effectiveness in providing information about the incipient initiation of the damage, there are limited published studies outlining the quantitative limitations of damage identification at any specific depth in composites using AE. Also, there is rare reports on the thickness limitation of the material structure being tested vis-à-vis the applicability of the AE. It is observed that most of the AE-based inspection practices reported in the literature have been devoted to the standard tensile test configurations specifically for testing in lateral (in-plane) directions on loaded pressure vessels. One of the key improvements that have been suggested to this technique involves the sourcing of elastic disturbance from within the structure as opposed to conventional ultrasound sources. However, for disturbances to be detected by the receiving transducers, they must move along the surface of the composite suggesting that good results are dependent on the adequate propagation of these disturbances. The acousto-ultrasonic technique, also known as the acoustic-emission-simulation technique or the stress-wave factor method, is an advanced complementary form of AE signal processing. The technique uses active, offset pitch-catch transducers, as opposed to a reliance on the energy released from within the structure. This improved control over the transmitted energy and the modes of obtaining the excitation waves allow for greater in-depth diffusion, and hence, the technique becomes more suitable for the examination of thick fiber-reinforced composites. Nevertheless, when it comes to complex composites such as woven fiber-based composites, the above-mentioned modifications have not always provided any noticeable benefits over conventional AE. To this end, published reports have been restricted to the examination of thin-skinned composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
13.
Zurück zum Zitat J. Kaiser, An investigation into the occurrence of noises in tensile tests, or a study of acoustic phenomena in tensile tests (Technical University of Munich, Munich, Germany, Doctor of Philosophy, 1950) J. Kaiser, An investigation into the occurrence of noises in tensile tests, or a study of acoustic phenomena in tensile tests (Technical University of Munich, Munich, Germany, Doctor of Philosophy, 1950)
14.
Zurück zum Zitat T.F. Drouillard, F.J. Laner, Acoustic emission, in A bibliography with abstracts. (IFI/Plenum, 1978), p. 787 T.F. Drouillard, F.J. Laner, Acoustic emission, in A bibliography with abstracts. (IFI/Plenum, 1978), p. 787
15.
Zurück zum Zitat R.G. Liptai, D.O. Harris, R.B. Engle, C. Tatro, Acoustic emission techniques in materials research. (California Univ., Livermore. Lawrence Radiation Lab., 1970) R.G. Liptai, D.O. Harris, R.B. Engle, C. Tatro, Acoustic emission techniques in materials research. (California Univ., Livermore. Lawrence Radiation Lab., 1970)
16.
Zurück zum Zitat R.K. Miller, P. McIntire, Acoustic emission testing. (American Society for Nondestructive Testing, 1987) R.K. Miller, P. McIntire, Acoustic emission testing. (American Society for Nondestructive Testing, 1987)
17.
Zurück zum Zitat D. Eitzen et al. Fundamental developments in acoustic emission measurements: The NBS program, in Quantitative NDE in the nuclear industry (1983) D. Eitzen et al. Fundamental developments in acoustic emission measurements: The NBS program, in Quantitative NDE in the nuclear industry (1983)
18.
Zurück zum Zitat M.R. Gorman, W.H. Prosser, AE source orientation by plate wave analysis. J Acoust Emiss 9(4), 282–288, (1990) M.R. Gorman, W.H. Prosser, AE source orientation by plate wave analysis. J Acoust Emiss 9(4), 282–288, (1990)
19.
Zurück zum Zitat S.M. Ziola, M.R. Gorman, Source location in thin plates using cross-correlation. J. Acoust. Soc. Am. 90(5), 2551–2556 (1991)CrossRef S.M. Ziola, M.R. Gorman, Source location in thin plates using cross-correlation. J. Acoust. Soc. Am. 90(5), 2551–2556 (1991)CrossRef
20.
Zurück zum Zitat A.Y. Vinogradov, D. Merson, The nature of acoustic emission during deformation processes in metallic materials. Low Temp. Phys. 44(9), 930–937 (2018)CrossRef A.Y. Vinogradov, D. Merson, The nature of acoustic emission during deformation processes in metallic materials. Low Temp. Phys. 44(9), 930–937 (2018)CrossRef
21.
Zurück zum Zitat A. Filippov, A.Y. Nikonov, V. Rubtsov, A. Dmitriev, S.Y. Tarasov, Vibration and acoustic emission monitoring the stability of peakless tool turning: experiment and modeling. J. Mater. Process. Technol. 246, 224–234 (2017)CrossRef A. Filippov, A.Y. Nikonov, V. Rubtsov, A. Dmitriev, S.Y. Tarasov, Vibration and acoustic emission monitoring the stability of peakless tool turning: experiment and modeling. J. Mater. Process. Technol. 246, 224–234 (2017)CrossRef
22.
Zurück zum Zitat G. Shen, Progress of acoustic emission technology on pressure equipment in China, in Advances in Acoustic Emission Technology, (Springer, 2017), pp. 3–15. G. Shen, Progress of acoustic emission technology on pressure equipment in China, in Advances in Acoustic Emission Technology, (Springer, 2017), pp. 3–15.
36.
Zurück zum Zitat P.J. Shull, Nondestructive evaluation: theory, techniques, and applications. (CRC press, 2002) P.J. Shull, Nondestructive evaluation: theory, techniques, and applications. (CRC press, 2002)
40.
Zurück zum Zitat W. Sikorski, Acoustic Emission. BoD—Books on Demand, (2012) W. Sikorski, Acoustic Emission. BoD—Books on Demand, (2012)
42.
Zurück zum Zitat M. Ohtsu, M. Enoki, Y. Mizutani, M. Shigeishi, Principles of the acoustic emission (AE) method and signal processing, in Practical Acoustic Emission Testing, ed. T. J. Society for Non-Destructive Inspect (Springer Japan, Tokyo, 2016), pp. 5–34. https://doi.org/10.1007/978-4-431-55072-3_2 M. Ohtsu, M. Enoki, Y. Mizutani, M. Shigeishi, Principles of the acoustic emission (AE) method and signal processing, in Practical Acoustic Emission Testing, ed. T. J. Society for Non-Destructive Inspect (Springer Japan, Tokyo, 2016), pp. 5–34. https://​doi.​org/​10.​1007/​978-4-431-55072-3_​2
43.
Zurück zum Zitat H. Nakamura et al., Practical acoustic emission testing. (Springer, 2016) H. Nakamura et al., Practical acoustic emission testing. (Springer, 2016)
46.
Zurück zum Zitat T.M. Proctor Jr., More recent improvements on the NBS conical transducer. J. Acoust. Emiss. 5, 134–142 (1986) T.M. Proctor Jr., More recent improvements on the NBS conical transducer. J. Acoust. Emiss. 5, 134–142 (1986)
47.
Zurück zum Zitat M.A. Hamstad, An examination of piezoelectric polymers as wideband acoustic emission displacement sensors, in Proc. Progress in Acoustic Emission VII. The Japanese Society for Nondestructive Inspection, (Sopporo, Japan, 1994), pp. 79–86 M.A. Hamstad, An examination of piezoelectric polymers as wideband acoustic emission displacement sensors, in Proc. Progress in Acoustic Emission VII. The Japanese Society for Nondestructive Inspection, (Sopporo, Japan, 1994), pp. 79–86
51.
Zurück zum Zitat N.N. Hsu, B. FR, Characterization and calibration of acoustic emission sensors. 1981. N.N. Hsu, B. FR, Characterization and calibration of acoustic emission sensors. 1981.
57.
Zurück zum Zitat RILEM Technical Committee (Masayasu Ohtsu), Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete*: Test method for classification of active cracks in concrete structures by acoustic emission. Mater. Struct. 43(9), 1187–1189, 2010. https://doi.org/10.1617/s11527-010-9640-6 RILEM Technical Committee (Masayasu Ohtsu), Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete*: Test method for classification of active cracks in concrete structures by acoustic emission. Mater. Struct. 43(9), 1187–1189, 2010. https://​doi.​org/​10.​1617/​s11527-010-9640-6
61.
Zurück zum Zitat ASTM E1316–17A, Standard terminology for nondestructive examinations. (ASTM International, 2017) ASTM E1316–17A, Standard terminology for nondestructive examinations. (ASTM International, 2017)
62.
Zurück zum Zitat S. Küttenbaum, S. Feistkorn, T. Braml, A. Taffe, S. Maack, Methods to quantify the utility of NDT in bridge reassessment. in European Workshop on Structural Health Monitoring, vol. 127, eds. P. Rizzo and A. Milazzo, (Springer International Publishing, Cham, 2021), pp. 403–413. https://doi.org/10.1007/978-3-030-64594-6_40 S. Küttenbaum, S. Feistkorn, T. Braml, A. Taffe, S. Maack, Methods to quantify the utility of NDT in bridge reassessment. in European Workshop on Structural Health Monitoring, vol. 127, eds. P. Rizzo and A. Milazzo, (Springer International Publishing, Cham, 2021), pp. 403–413. https://​doi.​org/​10.​1007/​978-3-030-64594-6_​40
72.
Zurück zum Zitat D. Kouroussis, A. Anastassopoulos, P. Vionis, V. Kolovos, Unsupervised pattern recognition of acoustic emission from full scale testing of a wind turbine blade. J. Acoust. Emiss. 18, 217, 2000. D. Kouroussis, A. Anastassopoulos, P. Vionis, V. Kolovos, Unsupervised pattern recognition of acoustic emission from full scale testing of a wind turbine blade. J. Acoust. Emiss. 18, 217, 2000.
73.
Zurück zum Zitat D. Xu, P.F. Liu, Z.P. Chen, J.X. Leng, L. Jiao, Achieving robust damage mode identification of adhesive composite joints for wind turbine blade using acoustic emission and machine learning. Comp. Struct. 236, p. 111840, 2020. D. Xu, P.F. Liu, Z.P. Chen, J.X. Leng, L. Jiao, Achieving robust damage mode identification of adhesive composite joints for wind turbine blade using acoustic emission and machine learning. Comp. Struct. 236, p. 111840, 2020.
74.
Zurück zum Zitat C.Q. Gómez Muñoz, F.P. García Márquez, A. Arcos Jiménez, M. Papelias, A heuristic method for detecting and locating faults employing electromagnetic acoustic transducers. 2015 C.Q. Gómez Muñoz, F.P. García Márquez, A. Arcos Jiménez, M. Papelias, A heuristic method for detecting and locating faults employing electromagnetic acoustic transducers. 2015
77.
Zurück zum Zitat M.J. Blanch, A.G. Dutton, Acoustic emission monitoring of field tests of an operating wind turbine. Key Eng. Mater. 245, 475–482 (2003)CrossRef M.J. Blanch, A.G. Dutton, Acoustic emission monitoring of field tests of an operating wind turbine. Key Eng. Mater. 245, 475–482 (2003)CrossRef
78.
Zurück zum Zitat N. Tsopelas, D. Kourousis, I. Ladis, A. Anastasopulos, D. J. Lekou, F. Mouzakis, Health monitoring of operating wind turbine blades with acoustic emission. Emerging technologies in non-destructive testing V. (Taylor and Francis, London, 2012), pp. 347–352 N. Tsopelas, D. Kourousis, I. Ladis, A. Anastasopulos, D. J. Lekou, F. Mouzakis, Health monitoring of operating wind turbine blades with acoustic emission. Emerging technologies in non-destructive testing V. (Taylor and Francis, London, 2012), pp. 347–352
79.
Zurück zum Zitat P.J. Schubel, R.J. Crossley, E.K.G. Boateng, J.R. Hutchinson, Review of structural health and cure monitoring techniques for large wind turbine blades. Renew Energy 51, 113–123 (2013)CrossRef P.J. Schubel, R.J. Crossley, E.K.G. Boateng, J.R. Hutchinson, Review of structural health and cure monitoring techniques for large wind turbine blades. Renew Energy 51, 113–123 (2013)CrossRef
80.
Zurück zum Zitat M.A. Rumsey, W. Musial, Application of acoustic emission nondestructive testing during wind turbine blade tests. J. Sol. Energy Eng. 123(4), 270 (2001)CrossRef M.A. Rumsey, W. Musial, Application of acoustic emission nondestructive testing during wind turbine blade tests. J. Sol. Energy Eng. 123(4), 270 (2001)CrossRef
81.
Zurück zum Zitat B.-H. Han, D.-J. Yoon, Y.-H. Huh, Y.-S. Lee, Damage assessment of wind turbine blade under static loading test using acoustic emission. J. Intell. Mater. Syst. Struct. 25(5), 621–630 (2014)CrossRef B.-H. Han, D.-J. Yoon, Y.-H. Huh, Y.-S. Lee, Damage assessment of wind turbine blade under static loading test using acoustic emission. J. Intell. Mater. Syst. Struct. 25(5), 621–630 (2014)CrossRef
82.
Zurück zum Zitat D. Zarouchas, D. van Hemelrijck, Mechanical characterization and damage assessment of thick adhesives for wind turbine blades using acoustic emission and digital image correlation techniques. J. Adhes. Sci. Technol. 28(14–15), 1500–1516 (2014)CrossRef D. Zarouchas, D. van Hemelrijck, Mechanical characterization and damage assessment of thick adhesives for wind turbine blades using acoustic emission and digital image correlation techniques. J. Adhes. Sci. Technol. 28(14–15), 1500–1516 (2014)CrossRef
83.
Zurück zum Zitat D.-J. Yoon, B.-H. Han, Quantitative damage assessment of hybrid composite wind turbine blades by energy based acoustic emission source location. 2014 D.-J. Yoon, B.-H. Han, Quantitative damage assessment of hybrid composite wind turbine blades by energy based acoustic emission source location. 2014
84.
Zurück zum Zitat J. Tang, S. Rafael, S. Soua, C. Mares, T.-H. Gan, Structural health monitoring methodology for wind turbine blades using acoustic emission. Proc. Cond. Nondestr. Eval. 20(6), 2014 J. Tang, S. Rafael, S. Soua, C. Mares, T.-H. Gan, Structural health monitoring methodology for wind turbine blades using acoustic emission. Proc. Cond. Nondestr. Eval. 20(6), 2014
85.
Zurück zum Zitat A. Bravo, L. Toubal, D. Koffi, F. Erchiqui, Damage characterization of bio and green polyethylene–birch composites under creep and cyclic testing with multivariable acoustic emissions. Materials 8(11), 7322–7341 (2015)CrossRef A. Bravo, L. Toubal, D. Koffi, F. Erchiqui, Damage characterization of bio and green polyethylene–birch composites under creep and cyclic testing with multivariable acoustic emissions. Materials 8(11), 7322–7341 (2015)CrossRef
86.
Zurück zum Zitat H.M. Akil, I.M. De Rosa, C. Santulli, F. Sarasini, Flexural behaviour of pultruded jute/glass and kenaf/glass hybrid composites monitored using acoustic emission. Mater. Sci. Eng., A 527(12), 2942–2950 (2010)CrossRef H.M. Akil, I.M. De Rosa, C. Santulli, F. Sarasini, Flexural behaviour of pultruded jute/glass and kenaf/glass hybrid composites monitored using acoustic emission. Mater. Sci. Eng., A 527(12), 2942–2950 (2010)CrossRef
87.
Zurück zum Zitat P.J. Novo, J.F. Silva, J.P. Nunes, A.T. Marques, Pultrusion of fibre reinforced thermoplastic pre-impregnated materials. Compos. B Eng. 89, 328–339 (2016)CrossRef P.J. Novo, J.F. Silva, J.P. Nunes, A.T. Marques, Pultrusion of fibre reinforced thermoplastic pre-impregnated materials. Compos. B Eng. 89, 328–339 (2016)CrossRef
88.
Zurück zum Zitat F. Aymerich, W.J. Staszewski, Impact damage detection in composite laminates using nonlinear acoustics. Compos. A Appl. Sci. Manuf. 41(9), 1084–1092 (2010)CrossRef F. Aymerich, W.J. Staszewski, Impact damage detection in composite laminates using nonlinear acoustics. Compos. A Appl. Sci. Manuf. 41(9), 1084–1092 (2010)CrossRef
89.
Zurück zum Zitat M.N. Noorsuhada, An overview on fatigue damage assessment of reinforced concrete structures with the aid of acoustic emission technique. Constr. Build. Mater. 112, 424–439 (2016)CrossRef M.N. Noorsuhada, An overview on fatigue damage assessment of reinforced concrete structures with the aid of acoustic emission technique. Constr. Build. Mater. 112, 424–439 (2016)CrossRef
90.
Zurück zum Zitat P. Liu et al., Damage mode identification of composite wind turbine blade under accelerated fatigue loads using acoustic emission and machine learning. Struct. Health Monit. 19(4), 1092–1103 (2020)CrossRef P. Liu et al., Damage mode identification of composite wind turbine blade under accelerated fatigue loads using acoustic emission and machine learning. Struct. Health Monit. 19(4), 1092–1103 (2020)CrossRef
91.
Zurück zum Zitat Y. Wang, Y. Zhang, G. Yang, R. Zhang, Identification of engine foreign object impact based on acoustic emission and radical basis function neural network. in 2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT), (Harbin, China, 2019), pp. 291–296. https://doi.org/10.1109/ICEICT.2019.8846291 Y. Wang, Y. Zhang, G. Yang, R. Zhang, Identification of engine foreign object impact based on acoustic emission and radical basis function neural network. in 2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT), (Harbin, China, 2019), pp. 291–296. https://​doi.​org/​10.​1109/​ICEICT.​2019.​8846291
92.
Zurück zum Zitat Ł. Doliński, M. Krawczuk, A. Żak, Damage detection in the wind turbine blade using root mean square and experimental modal parameters, in Proceedings of the 13th International Conference on Damage Assessment of Structures, ed. M. A. Wahab, (Springer Singapore, Singapore, 2020), pp. 728–742. https://doi.org/10.1007/978-981-13-8331-1_57 Ł. Doliński, M. Krawczuk, A. Żak, Damage detection in the wind turbine blade using root mean square and experimental modal parameters, in Proceedings of the 13th International Conference on Damage Assessment of Structures, ed. M. A. Wahab, (Springer Singapore, Singapore, 2020), pp. 728–742. https://​doi.​org/​10.​1007/​978-981-13-8331-1_​57
93.
Zurück zum Zitat Z. Liu, X. Wang, L. Zhang, Fault diagnosis of industrial wind turbine blade bearing using acoustic emission analysis. IEEE Trans. Instrum. Meas. 69(9), 6630–6639 (2020)CrossRef Z. Liu, X. Wang, L. Zhang, Fault diagnosis of industrial wind turbine blade bearing using acoustic emission analysis. IEEE Trans. Instrum. Meas. 69(9), 6630–6639 (2020)CrossRef
99.
Zurück zum Zitat A. Vary, K.J. Bowles, An ultrasonic-acoustic technique for nondestructive evaluation of fiber composite quality. Polym. Eng. Sci. 19(5), 373–376 (1979)CrossRef A. Vary, K.J. Bowles, An ultrasonic-acoustic technique for nondestructive evaluation of fiber composite quality. Polym. Eng. Sci. 19(5), 373–376 (1979)CrossRef
100.
Zurück zum Zitat A. Vary, R.F. Lark, Correlation of fiber composite tensile strength with the ultrasonic stress wave factor. J. Test. Eval. 7(4), 185–191 (1979)CrossRef A. Vary, R.F. Lark, Correlation of fiber composite tensile strength with the ultrasonic stress wave factor. J. Test. Eval. 7(4), 185–191 (1979)CrossRef
102.
Zurück zum Zitat P.F. Liu, J. Yang, B. Wang, Z.F. Zhou, J.Y. Zheng, A study on the intralaminar damage and interlaminar delamination of carbon fiber composite laminates under three-point bending using acoustic emission. J. Fail. Anal. Prev. 15(1), 101–121 (2015)CrossRef P.F. Liu, J. Yang, B. Wang, Z.F. Zhou, J.Y. Zheng, A study on the intralaminar damage and interlaminar delamination of carbon fiber composite laminates under three-point bending using acoustic emission. J. Fail. Anal. Prev. 15(1), 101–121 (2015)CrossRef
103.
Zurück zum Zitat T.H. Loutas, V. Kostopoulos, Health monitoring of carbon/carbon, woven reinforced composites. Damage assessment by using advanced signal processing techniques. Part I: acoustic emission monitoring and damage mechanisms evolution. Compos. Sci. Technol. 69(2), 265–272 (2009)CrossRef T.H. Loutas, V. Kostopoulos, Health monitoring of carbon/carbon, woven reinforced composites. Damage assessment by using advanced signal processing techniques. Part I: acoustic emission monitoring and damage mechanisms evolution. Compos. Sci. Technol. 69(2), 265–272 (2009)CrossRef
107.
Zurück zum Zitat E. Tsangouri, K. Van Tittelboom, D. Van Hemelrijck, N. De Belie, Visualization of the healing process on reinforced concrete beams by application of Digital Image Correlation (DIC). WIT Trans. Eng. Sci. 77, 283–294 (2013)CrossRef E. Tsangouri, K. Van Tittelboom, D. Van Hemelrijck, N. De Belie, Visualization of the healing process on reinforced concrete beams by application of Digital Image Correlation (DIC). WIT Trans. Eng. Sci. 77, 283–294 (2013)CrossRef
108.
Zurück zum Zitat M. Fabian, C.U. Grosse, Efficiency of self-healing agents for cementitious materials characterized by NDT M. Fabian, C.U. Grosse, Efficiency of self-healing agents for cementitious materials characterized by NDT
110.
Zurück zum Zitat R.B. Heslehurst, Defects and damage in composite materials and structures. (CRC press, 2014) R.B. Heslehurst, Defects and damage in composite materials and structures. (CRC press, 2014)
120.
Zurück zum Zitat H. Dunegan, A. Green, Factors affecting acoustic emission response from materials. in Acoustic Emission, eds. R. Liptai, D. Harris, and C. Tatro, (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428–2959, 1972), pp. 100–100–14. https://doi.org/10.1520/STP35383S H. Dunegan, A. Green, Factors affecting acoustic emission response from materials. in Acoustic Emission, eds. R. Liptai, D. Harris, and C. Tatro, (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428–2959, 1972), pp. 100–100–14. https://​doi.​org/​10.​1520/​STP35383S
Metadaten
Titel
Application of Acoustic Emission for the Inspection of Fiber-Reinforced Composite Materials
verfasst von
Shuncong Zhong
Walter Nsengiyumva
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-0848-4_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.