Skip to main content

2021 | OriginalPaper | Buchkapitel

Application of Back Propagation Algorithm in Optimization of Weave Friction Stir Welding—A Study

verfasst von : M. Balasubramanian, D. Jayabalakrishnan, C. Hemadri, B. Ashwin

Erschienen in: Futuristic Trends in Intelligent Manufacturing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern engineering applications require the amalgamation of unlike materials for achieving specific thermal, electrical, and physical properties. Aluminium alloys are quite often employ fusion or solid-state processes to join with copper. However, fusion welding of dissimilar materials results in defects such as porosity and the formation of brittle particles. Friction Stir Welding (FSW) is energy efficient, environment friendly process used for joining dissimilar metals. Hence, an attempt is made to join aluminium alloy (AA6061-T6) and pure copper. In this article, the effect of tool pin offset, eccentric weave tool path, and the addition of graphene nano-platelets was studied and compared with the conventional FSW. The effect of pin offset compared to the conventional pin position helped in obtaining a good weld strength due to the large volume of material transportation of base materials and better stirring effect. The novel eccentric weave motion of the tool was useful for obtaining enhanced joint property due to higher holding time, adequate heat input, and uniform mixing during the joining process. A back propagation network (BPN) was utilized in arriving at the optimal process parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ouyang, J. H., & Kovacevic, R. (2002). Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys. Journal of Materials Engineering and Performance, 11(1), 51–63.CrossRef Ouyang, J. H., & Kovacevic, R. (2002). Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys. Journal of Materials Engineering and Performance, 11(1), 51–63.CrossRef
2.
Zurück zum Zitat Ouyang, J., Yarrapareddy, E., & Kovacevic, R. (2006). Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Journal of Materials Processing Technology, 172, 110–112.CrossRef Ouyang, J., Yarrapareddy, E., & Kovacevic, R. (2006). Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Journal of Materials Processing Technology, 172, 110–112.CrossRef
3.
Zurück zum Zitat Liu, P., Shi, Q. Y., Wang, W., Wang, X., & Zhang, Z. (2008). Microstructure and XRD analysis of FSW joints for copper T2/aluminum 5A06 dissimilar materials. Materials Letters, 62, 4106–4108.CrossRef Liu, P., Shi, Q. Y., Wang, W., Wang, X., & Zhang, Z. (2008). Microstructure and XRD analysis of FSW joints for copper T2/aluminum 5A06 dissimilar materials. Materials Letters, 62, 4106–4108.CrossRef
4.
Zurück zum Zitat Sinha, V. C., Kundu, S., & Chatterjee, S. (2016). Microstructure and mechanical properties of similar and dissimilar joints of aluminium alloy and pure copper by friction stir welding. Perspectives in Science, 8, 543–546.CrossRef Sinha, V. C., Kundu, S., & Chatterjee, S. (2016). Microstructure and mechanical properties of similar and dissimilar joints of aluminium alloy and pure copper by friction stir welding. Perspectives in Science, 8, 543–546.CrossRef
5.
Zurück zum Zitat Muthu, M. F. X., & Jayabalan, V. (2016). Effect of pin profile and process parameters on microstructure and mechanical properties of friction stir welded Al–Cu joints. Transactions of Nonferrous Metals Society of China, 26(4), 984–993.CrossRef Muthu, M. F. X., & Jayabalan, V. (2016). Effect of pin profile and process parameters on microstructure and mechanical properties of friction stir welded Al–Cu joints. Transactions of Nonferrous Metals Society of China, 26(4), 984–993.CrossRef
6.
Zurück zum Zitat Mubiayi, M. P., & Akinlabi, E. T. (2017). Characterization of the intermetallic compounds in aluminium and copper friction stir spot welds. Materials Today: Proceedings, 4, 533–540. Mubiayi, M. P., & Akinlabi, E. T. (2017). Characterization of the intermetallic compounds in aluminium and copper friction stir spot welds. Materials Today: Proceedings, 4, 533–540.
7.
Zurück zum Zitat Shi, H., Chen, K., Liang, Z., Dong, F., Yu, T., Dong, X., & Shan, A. (2017). Intermetallic compounds in the banded structure and their effect on mechanical properties of Al/Mg dissimilar friction stir welding joints. Journal of Materials Science and Technology, 33(4), 359–366.CrossRef Shi, H., Chen, K., Liang, Z., Dong, F., Yu, T., Dong, X., & Shan, A. (2017). Intermetallic compounds in the banded structure and their effect on mechanical properties of Al/Mg dissimilar friction stir welding joints. Journal of Materials Science and Technology, 33(4), 359–366.CrossRef
8.
Zurück zum Zitat Zhang, W., Shen, Y., Yan, Y., & Guo, R. (2017). Dissimilar friction stir welding of 6061 Al to T2 pure Cu adopting tooth-shaped joint configuration: Microstructure and mechanical properties. Materials Science and Engineering A, 690, 355–364.CrossRef Zhang, W., Shen, Y., Yan, Y., & Guo, R. (2017). Dissimilar friction stir welding of 6061 Al to T2 pure Cu adopting tooth-shaped joint configuration: Microstructure and mechanical properties. Materials Science and Engineering A, 690, 355–364.CrossRef
9.
Zurück zum Zitat Oliveira, J. P., Duarte, J. F., Inacio, P., Schell, N., Miranda, R. M., & Santos, T. G. (2017). Production of Al/NiTi composites by friction stir welding assisted by electrical current. Materials and Design, 113, 311–318.CrossRef Oliveira, J. P., Duarte, J. F., Inacio, P., Schell, N., Miranda, R. M., & Santos, T. G. (2017). Production of Al/NiTi composites by friction stir welding assisted by electrical current. Materials and Design, 113, 311–318.CrossRef
10.
Zurück zum Zitat Khodabakhshi, F., Arab, S. M., Svec, P., & Gerlichd, A. P. (2017). Fabrication of a new Al-Mg/graphene nano composite by multi-pass friction-stir processing: Dispersion, microstructure, stability, and strengthening. Materials Characterization, 132, 92–107.CrossRef Khodabakhshi, F., Arab, S. M., Svec, P., & Gerlichd, A. P. (2017). Fabrication of a new Al-Mg/graphene nano composite by multi-pass friction-stir processing: Dispersion, microstructure, stability, and strengthening. Materials Characterization, 132, 92–107.CrossRef
11.
Zurück zum Zitat Lee, I. S., Hsu, C. J., Chen, C. F., Ho, N. J., & Kao, P. W. (2011). Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing. Composites Science and Technology, 71(5), 693–698.CrossRef Lee, I. S., Hsu, C. J., Chen, C. F., Ho, N. J., & Kao, P. W. (2011). Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing. Composites Science and Technology, 71(5), 693–698.CrossRef
12.
Zurück zum Zitat Wang, W., Shi, Q. Y., Liu, P., Li, H. K., & Li, T. (2009). A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. Journal of Materials Processing Technology, 209(4), 2099–3103.CrossRef Wang, W., Shi, Q. Y., Liu, P., Li, H. K., & Li, T. (2009). A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. Journal of Materials Processing Technology, 209(4), 2099–3103.CrossRef
13.
Zurück zum Zitat Cabibbo, M., Forcellese, A. M., Simoncini, M., Pieralisi, D., & Ciccarelli, . (2016). Effect of welding motion and pre-/post-annealing of friction stir welded AA5754 joints. Materials & Design, 93, 146–159.CrossRef Cabibbo, M., Forcellese, A. M., Simoncini, M., Pieralisi, D., & Ciccarelli, . (2016). Effect of welding motion and pre-/post-annealing of friction stir welded AA5754 joints. Materials & Design, 93, 146–159.CrossRef
17.
Zurück zum Zitat Arun Kumar, S., Ramesh, S., Kedarvignesh, S. E., Aravind Arulchelvam, S., & Anjunath, M. S. (2019). Review of Friction stir processing of magnesium alloys. Materials Today: Proceedings, 16(2), 1320–1324. Arun Kumar, S., Ramesh, S., Kedarvignesh, S. E., Aravind Arulchelvam, S., & Anjunath, M. S. (2019). Review of Friction stir processing of magnesium alloys. Materials Today: Proceedings, 16(2), 1320–1324.
18.
Zurück zum Zitat Subramani, V., Jayavel, B., Sengottuvelu, R., & Lal Lazar, P. J. (2019). Assessment of microstructure and mechanical properties of stir zone seam of friction stir welded Magnesium AZ31B through Nano-SiC. Materials, 12, 1044; https://doi.org/10.3390/ma12071044. Subramani, V., Jayavel, B., Sengottuvelu, R., & Lal Lazar, P. J. (2019). Assessment of microstructure and mechanical properties of stir zone seam of friction stir welded Magnesium AZ31B through Nano-SiC. Materials, 12, 1044; https://​doi.​org/​10.​3390/​ma12071044.
19.
Zurück zum Zitat Bisadi, H., Tavakoli, A., Tour Sangsaraki, M., & Tour Sangsaraki, K. (2013). The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Materials and Design, 43, 80–88.CrossRef Bisadi, H., Tavakoli, A., Tour Sangsaraki, M., & Tour Sangsaraki, K. (2013). The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Materials and Design, 43, 80–88.CrossRef
20.
Zurück zum Zitat Chung, K., Lee, W., Kim, D., Kim, J., Chung, K. H., Kim, C., & Wagoner, R. H. (2010). Macro-performance evaluation of friction stir welded automotive tailor-welded blank sheets: Part I—Material properties. International Journal of Solids and Structures, 47(7–8), 1048–1062.MATHCrossRef Chung, K., Lee, W., Kim, D., Kim, J., Chung, K. H., Kim, C., & Wagoner, R. H. (2010). Macro-performance evaluation of friction stir welded automotive tailor-welded blank sheets: Part I—Material properties. International Journal of Solids and Structures, 47(7–8), 1048–1062.MATHCrossRef
22.
Zurück zum Zitat Liu, Q., Ke, L., Liu, F., Huang, C., & Xing, L. (2013). Microstructure and mechanical property of multi-walled carbon nano tubes reinforced aluminum matrix composites fabricated by friction stir processing. Materials and Design, 45, 343–348.CrossRef Liu, Q., Ke, L., Liu, F., Huang, C., & Xing, L. (2013). Microstructure and mechanical property of multi-walled carbon nano tubes reinforced aluminum matrix composites fabricated by friction stir processing. Materials and Design, 45, 343–348.CrossRef
23.
Zurück zum Zitat Fonda, R. W., & Bingert, J. F. (2006). Precipitation and grain refinement in a 2195 Al friction stir weld. Metallurgical and Materials Transactions a: Physical Metallurgy and Materials Science, 37(12), 3593–3604.CrossRef Fonda, R. W., & Bingert, J. F. (2006). Precipitation and grain refinement in a 2195 Al friction stir weld. Metallurgical and Materials Transactions a: Physical Metallurgy and Materials Science, 37(12), 3593–3604.CrossRef
24.
Zurück zum Zitat Fotoohi, Y., Rasaee, S., Bisadi, H., & Zahedi, M. (2014). Effect of friction stir welding parameters on the mechanical properties and microstructure of the dissimilar Al5083-copper butt joint. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 228(4), 334–340.CrossRef Fotoohi, Y., Rasaee, S., Bisadi, H., & Zahedi, M. (2014). Effect of friction stir welding parameters on the mechanical properties and microstructure of the dissimilar Al5083-copper butt joint. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 228(4), 334–340.CrossRef
25.
Zurück zum Zitat Ko, Y.-j, Lee, K.-J., & Baik, K.-h. (2017). Effect of tool rotational speed on mechanical properties and microstructure of friction stir welding joints within Ti–6Al–4V alloy sheets. Advances in Mechanical Engineering, 9(8), 1–7.CrossRef Ko, Y.-j, Lee, K.-J., & Baik, K.-h. (2017). Effect of tool rotational speed on mechanical properties and microstructure of friction stir welding joints within Ti–6Al–4V alloy sheets. Advances in Mechanical Engineering, 9(8), 1–7.CrossRef
26.
Zurück zum Zitat Xue, P., Xiao, B. L., Ni, D. R., & Ma, Z. Y. (2010). Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Materials Science and Engineering a, 527(21–22), 5723–5727.CrossRef Xue, P., Xiao, B. L., Ni, D. R., & Ma, Z. Y. (2010). Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Materials Science and Engineering a, 527(21–22), 5723–5727.CrossRef
27.
Zurück zum Zitat Mehta, K. P., & Badheka, V. J. (2015). A review on dissimilar friction stir welding of copper to aluminum: Process. Properties, and Variants, Materials and Manufacturing Processes, 31(3), 233–254. Mehta, K. P., & Badheka, V. J. (2015). A review on dissimilar friction stir welding of copper to aluminum: Process. Properties, and Variants, Materials and Manufacturing Processes, 31(3), 233–254.
28.
Zurück zum Zitat Al-Jarrah, J. A. (2014). Surface morphology and mechanical properties of aluminum-copper joints welded by friction stir welding. Contemporary Engineering Sciences, 7(5), 219–230.CrossRef Al-Jarrah, J. A. (2014). Surface morphology and mechanical properties of aluminum-copper joints welded by friction stir welding. Contemporary Engineering Sciences, 7(5), 219–230.CrossRef
29.
Zurück zum Zitat Bhattacharya, T., Das, H., Jana, S., & Pal, T. (2017). Numerical and experimental investigation of thermal history, material flow and mechanical properties of friction stir welded aluminium alloy to DHP copper dissimilar joint. The International Journal of Advanced Manufacturing Technology, 88, 847–861.CrossRef Bhattacharya, T., Das, H., Jana, S., & Pal, T. (2017). Numerical and experimental investigation of thermal history, material flow and mechanical properties of friction stir welded aluminium alloy to DHP copper dissimilar joint. The International Journal of Advanced Manufacturing Technology, 88, 847–861.CrossRef
30.
Zurück zum Zitat Lee, W. B., Yeon, Y. M., & Jung, S. B. (2004). Mechanical properties related to microstructural variation of 6061 Al alloy joints by friction stir welding. Materials Transactions, 45(5), 1700–1705.CrossRef Lee, W. B., Yeon, Y. M., & Jung, S. B. (2004). Mechanical properties related to microstructural variation of 6061 Al alloy joints by friction stir welding. Materials Transactions, 45(5), 1700–1705.CrossRef
31.
Zurück zum Zitat Benavides, S., Li, Y., Murr, L. E., Brown, D., & McClure, J. C. (1999). Low-temperature friction-stir welding of 2024 aluminum. Scripta Materialia, 41(8), 809–815.CrossRef Benavides, S., Li, Y., Murr, L. E., Brown, D., & McClure, J. C. (1999). Low-temperature friction-stir welding of 2024 aluminum. Scripta Materialia, 41(8), 809–815.CrossRef
32.
Zurück zum Zitat Shanmuga Sundaram, N., & Murugan, N. (2010). Tensile behavior of dissimilar friction stir welded joints of aluminium alloys. Materials and Design, 31(9), 4184–4193.CrossRef Shanmuga Sundaram, N., & Murugan, N. (2010). Tensile behavior of dissimilar friction stir welded joints of aluminium alloys. Materials and Design, 31(9), 4184–4193.CrossRef
33.
Zurück zum Zitat Galvao, I., Leal, R. M., Loureiro, A., & Rodrigues, D. M. (2010). Material flow in heterogeneous friction stir welding of aluminium and copper thin sheets. Science and Technology of Welding and Joining, 15(8), 654–660.CrossRef Galvao, I., Leal, R. M., Loureiro, A., & Rodrigues, D. M. (2010). Material flow in heterogeneous friction stir welding of aluminium and copper thin sheets. Science and Technology of Welding and Joining, 15(8), 654–660.CrossRef
34.
Zurück zum Zitat Tan, C. W., Jiang, Z. G., Li, L. Q., Chen, Y. B., & Chen, X. Y. (2013). Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding. Materials and Design, 51, 466–473.CrossRef Tan, C. W., Jiang, Z. G., Li, L. Q., Chen, Y. B., & Chen, X. Y. (2013). Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding. Materials and Design, 51, 466–473.CrossRef
35.
Zurück zum Zitat Singarapu, U., Adepu, K., & Arumalle, S. R. (2015). Influence of tool material and rotational speed on mechanical properties of friction stir welded AZ31B magnesium alloy. Journal of Magnesium and Alloys, 3(4), 335–344.CrossRef Singarapu, U., Adepu, K., & Arumalle, S. R. (2015). Influence of tool material and rotational speed on mechanical properties of friction stir welded AZ31B magnesium alloy. Journal of Magnesium and Alloys, 3(4), 335–344.CrossRef
36.
Zurück zum Zitat Shen, J. J., Liu, H. J., & Cui, F. (2010). Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Materials and Design, 31(8), 3937–3942.CrossRef Shen, J. J., Liu, H. J., & Cui, F. (2010). Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Materials and Design, 31(8), 3937–3942.CrossRef
37.
Zurück zum Zitat Muthu, M. F. X., & Jayabalan, V. (2015). Tool travel speed effects on the microstructure of friction stir welded aluminum-copper joints. Journal of Materials Processing Technology, 217, 105–113.CrossRef Muthu, M. F. X., & Jayabalan, V. (2015). Tool travel speed effects on the microstructure of friction stir welded aluminum-copper joints. Journal of Materials Processing Technology, 217, 105–113.CrossRef
38.
Zurück zum Zitat Al-Roubaiy, A. O., Nabat, S. M., & Batako, A. D. L. (2014). Experimental and theoretical analysis of friction stir welding of Al–Cu joints. the International Journal of Advanced Manufacturing Technology, 71(9–12), 1631–1642.CrossRef Al-Roubaiy, A. O., Nabat, S. M., & Batako, A. D. L. (2014). Experimental and theoretical analysis of friction stir welding of Al–Cu joints. the International Journal of Advanced Manufacturing Technology, 71(9–12), 1631–1642.CrossRef
39.
Zurück zum Zitat Akbari, M., Abdi Behnagh, R., & Dadvand, A. (2012). Effect of materials position on friction stir lap welding of Al to Cu. Science and Technology of Welding and Joining, 17(7), 581–588.CrossRef Akbari, M., Abdi Behnagh, R., & Dadvand, A. (2012). Effect of materials position on friction stir lap welding of Al to Cu. Science and Technology of Welding and Joining, 17(7), 581–588.CrossRef
40.
Zurück zum Zitat Akbari, M., & Behnagh, R. A. (2012). Dissimilar friction-stir lap joining of 5083 aluminum alloy to CuZn34 brass. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 43(5), 1177–1186.CrossRef Akbari, M., & Behnagh, R. A. (2012). Dissimilar friction-stir lap joining of 5083 aluminum alloy to CuZn34 brass. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 43(5), 1177–1186.CrossRef
41.
Zurück zum Zitat Beygi, R., Kazeminexhad, M., & Kokabi, A. H. (2012). Butt joining of Al–Cu bilayer sheet through friction stir welding. Transactions of Nonferrous Metals Society of China, 22(12), 2925–2929.CrossRef Beygi, R., Kazeminexhad, M., & Kokabi, A. H. (2012). Butt joining of Al–Cu bilayer sheet through friction stir welding. Transactions of Nonferrous Metals Society of China, 22(12), 2925–2929.CrossRef
42.
Zurück zum Zitat Xue, P., Ni, D. R., Wang, D., Xiao, B. L., & Ma, Z. Y. (2011). Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints. Materials Science and Engineering A, 528(13–14), 4683–4689.CrossRef Xue, P., Ni, D. R., Wang, D., Xiao, B. L., & Ma, Z. Y. (2011). Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints. Materials Science and Engineering A, 528(13–14), 4683–4689.CrossRef
43.
Zurück zum Zitat Ozdemir, N., Buyükarslan, S., & Sarsylmaz, F. (2007). Effect of tool profile, rotational Speed and welding speed on the mechanical behaviour of friction stir welded AA1030 aluminium alloy. Science and Eng Journal of Firat University, 19(4), 575–582. Ozdemir, N., Buyükarslan, S., & Sarsylmaz, F. (2007). Effect of tool profile, rotational Speed and welding speed on the mechanical behaviour of friction stir welded AA1030 aluminium alloy. Science and Eng Journal of Firat University, 19(4), 575–582.
44.
Zurück zum Zitat Pande, S. V., & Badheka, V. J. (2014). Effect of tool pin offset on mechanical and metallurgical properties of dissimilar FSW joints of 6061t6 AL alloy to copper material. Indian Welding Journal, 47, 1–7.CrossRef Pande, S. V., & Badheka, V. J. (2014). Effect of tool pin offset on mechanical and metallurgical properties of dissimilar FSW joints of 6061t6 AL alloy to copper material. Indian Welding Journal, 47, 1–7.CrossRef
45.
Zurück zum Zitat Balasubramanian, M., & Jayabalakrishnan, D. (2019). Friction stir weave welding (FSWW) of AA6061 aluminium alloy with a novel tool path pattern. Australian Journal of Mechanical Engineering, 17(2), 133–144.CrossRef Balasubramanian, M., & Jayabalakrishnan, D. (2019). Friction stir weave welding (FSWW) of AA6061 aluminium alloy with a novel tool path pattern. Australian Journal of Mechanical Engineering, 17(2), 133–144.CrossRef
46.
Zurück zum Zitat London, B. M., Mahoney, W., Bingel, M., Calabrese, R. H., Bossi, D. W. Jata, K. V., Mahoney, M. W., ishra, R. S. Semiatin, S. L. & Lienert, T. (Eds.). (2003). Friction Stir Welding and Processing (p. 3). TMS: II. London, B. M., Mahoney, W., Bingel, M., Calabrese, R. H., Bossi, D. W. Jata, K. V., Mahoney, M. W., ishra, R. S. Semiatin, S. L. & Lienert, T. (Eds.). (2003). Friction Stir Welding and Processing (p. 3). TMS: II.
47.
Zurück zum Zitat Balasubramanian, M., & Jayabalakrishnan, S. (2018). Eccentric-weave Friction Stir Welding between Cu and AA 6061–T6 with reinforced Graphene nanoparticles. Materials and Manufacturing Processes, 33(3), 333–342.CrossRef Balasubramanian, M., & Jayabalakrishnan, S. (2018). Eccentric-weave Friction Stir Welding between Cu and AA 6061–T6 with reinforced Graphene nanoparticles. Materials and Manufacturing Processes, 33(3), 333–342.CrossRef
48.
Zurück zum Zitat Elangovan, K., & Balasubramanian, V. (2008). Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. Journal of Materials Processing Technology, 200(1–3), 163–175.CrossRef Elangovan, K., & Balasubramanian, V. (2008). Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. Journal of Materials Processing Technology, 200(1–3), 163–175.CrossRef
49.
Zurück zum Zitat Essa, A. R. S., Ahmed, M. M. Z., Mohamed, A. K. Y. A., & El-Nikhaily, A. E. (2016). An analytical model of heat generation for eccentric cylindrical pin in friction stir welding. Journal of Materials Research and Technology, 5(3), 234–240.CrossRef Essa, A. R. S., Ahmed, M. M. Z., Mohamed, A. K. Y. A., & El-Nikhaily, A. E. (2016). An analytical model of heat generation for eccentric cylindrical pin in friction stir welding. Journal of Materials Research and Technology, 5(3), 234–240.CrossRef
51.
Zurück zum Zitat Cho, H. H., Han, H. N., Hong, S. T., Park, J. H., Kwon, Y. J., Kim, S. H., & Steel, R. J. (2010). Microstructural analysis of friction stir welded ferritic stainless steel. Materials Science and Engineering A, 528(6), 2889–2894.CrossRef Cho, H. H., Han, H. N., Hong, S. T., Park, J. H., Kwon, Y. J., Kim, S. H., & Steel, R. J. (2010). Microstructural analysis of friction stir welded ferritic stainless steel. Materials Science and Engineering A, 528(6), 2889–2894.CrossRef
52.
Zurück zum Zitat Nieto, A., Bisht, A., Lahiri, D., Zhang, C., & Agarwal, A. (2017). Graphene reinforced metal and ceramic matrix composites: A review. International Materials Reviews, 62(5), 241–302.CrossRef Nieto, A., Bisht, A., Lahiri, D., Zhang, C., & Agarwal, A. (2017). Graphene reinforced metal and ceramic matrix composites: A review. International Materials Reviews, 62(5), 241–302.CrossRef
53.
Zurück zum Zitat Nourani, M., Abbas, S., Milani, S., & Yannacopoulos, T. (2011). Optimization of process parameters in friction stir welding of 6061 aluminum alloy. A Review and Case Study, Engineering, 3, 144–155. Nourani, M., Abbas, S., Milani, S., & Yannacopoulos, T. (2011). Optimization of process parameters in friction stir welding of 6061 aluminum alloy. A Review and Case Study, Engineering, 3, 144–155.
54.
Zurück zum Zitat Sahu, P. K., & Pal, S. (2017). Mechanical properties of dissimilar thickness aluminium alloy weld by single/double pass FSW. Journal of Materials Processing Technology, 243, 442–455.CrossRef Sahu, P. K., & Pal, S. (2017). Mechanical properties of dissimilar thickness aluminium alloy weld by single/double pass FSW. Journal of Materials Processing Technology, 243, 442–455.CrossRef
55.
Zurück zum Zitat Saeid, T., Abdollah-zadeh, A., & Sazgari, B. (2010). Weldability and mechanical properties of dissimilar aluminum-copper lap joints made by friction stir welding. Journal of Alloys and Compounds, 490(1–2), 652–655.CrossRef Saeid, T., Abdollah-zadeh, A., & Sazgari, B. (2010). Weldability and mechanical properties of dissimilar aluminum-copper lap joints made by friction stir welding. Journal of Alloys and Compounds, 490(1–2), 652–655.CrossRef
56.
Zurück zum Zitat Savolainen, K. (2012). Friction stir welding of copper and microstructure and properties of the welds’, Ph.D. thesis. Aalto university. Savolainen, K. (2012). Friction stir welding of copper and microstructure and properties of the welds’, Ph.D. thesis. Aalto university.
57.
Zurück zum Zitat Sevvel, P., & Jaiganesh, V. (2017). Effects of axial force on the mechanical properties of AZ80A Mg alloy during friction stir welding. Materials Today: Proceedings, 4, 1312–1320. Sevvel, P., & Jaiganesh, V. (2017). Effects of axial force on the mechanical properties of AZ80A Mg alloy during friction stir welding. Materials Today: Proceedings, 4, 1312–1320.
58.
Zurück zum Zitat Zhang, D., Suzuki, M., & Maruyama, K. (2005). Microstructural evolution of a heat-resistant magnesium alloy due to friction stir welding. Scripta Materialia, 52(9), 899–903.CrossRef Zhang, D., Suzuki, M., & Maruyama, K. (2005). Microstructural evolution of a heat-resistant magnesium alloy due to friction stir welding. Scripta Materialia, 52(9), 899–903.CrossRef
59.
Zurück zum Zitat He, X., Gu, F., & Ball, A. (2014). A review of numerical analysis of friction stir welding. Progress in Materials Science, 65, 1–66.CrossRef He, X., Gu, F., & Ball, A. (2014). A review of numerical analysis of friction stir welding. Progress in Materials Science, 65, 1–66.CrossRef
60.
Zurück zum Zitat Akinlabi, E. T. (2012). Effect of shoulder size on weld properties of dissimilar metal friction stir welds. Journal of Materials Engineering and Performance, 21(7), 1514–1519.CrossRef Akinlabi, E. T. (2012). Effect of shoulder size on weld properties of dissimilar metal friction stir welds. Journal of Materials Engineering and Performance, 21(7), 1514–1519.CrossRef
61.
Zurück zum Zitat Zhang, Z, & Chen, D. L. (2008). Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nano composites. Materials Science and Engineering A, 483–484(1–2 C), 148–152. Zhang, Z, & Chen, D. L. (2008). Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nano composites. Materials Science and Engineering A, 483–484(1–2 C), 148–152.
62.
Zurück zum Zitat Balasubramanian, M., & Jayabalakrishnan, D. (2020). Influence of pin offset and weave pattern on the performance of Al–Cu joints reinforced with graphene particles. International Journal of Automotive and Mechanical Engineering, 17(3), 8186–8196.CrossRef Balasubramanian, M., & Jayabalakrishnan, D. (2020). Influence of pin offset and weave pattern on the performance of Al–Cu joints reinforced with graphene particles. International Journal of Automotive and Mechanical Engineering, 17(3), 8186–8196.CrossRef
Metadaten
Titel
Application of Back Propagation Algorithm in Optimization of Weave Friction Stir Welding—A Study
verfasst von
M. Balasubramanian
D. Jayabalakrishnan
C. Hemadri
B. Ashwin
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-70009-6_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.