Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Application of Computing Hydrodynamic Forces and Moments on a Vessel Without Bernoulli’s Equation

verfasst von : Arthur M. Reed, John G. Telste

Erschienen in: Contemporary Ideas on Ship Stability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traditionally the hydrodynamic force on a ship’s hull is obtained by integrating the pressure over the hull, using Bernoulli’s equation to compute the pressures. Due the need to evaluate \(\varPhi _t\), \(\varPhi _x\), \(\varPhi _y\), \(\varPhi _z\) at every instant in time, this becomes a computational challenge when one wishes to know the hydrodynamic forces (and moments) on the instantaneous wetted surface of a vessel in extreme seas. A methodology that converts the integration of the pressure over the hull surface into an impulse, the time derivative of several integrals of the velocity potential over the surface of the vessel and possibly the free surface near the vessel is introduced. Some examples of applying the impulsive theory to 2- and 3-dimensional bodies are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
As the free-surface boundary condition is not used in the development of the momentum theory for the force, the specific free-surface boundary condition chosen is not important.
 
2
In the plots that follow, the UMBest results are labeled “Current Method”.
 
Literatur
Zurück zum Zitat Bandyk, P. J. (2009) A Body-Exact Strip Theory Approach to Ship Motion Computations. Ph.D. Dissertation, Univ. Mich., Ann Arbor, MI, xii+122 p. Bandyk, P. J. (2009) A Body-Exact Strip Theory Approach to Ship Motion Computations. Ph.D. Dissertation, Univ. Mich., Ann Arbor, MI, xii+122 p.
Zurück zum Zitat Belknap W. and J. Telste (2008) Identification o fLeading Order Nonlinearities from Numerical Forced Motion Experiment Results. Proc. 27thSymp. NavalHydro., Seoul, Korea, 18 p. Belknap W. and J. Telste (2008) Identification o fLeading Order Nonlinearities from Numerical Forced Motion Experiment Results. Proc. 27thSymp. NavalHydro., Seoul, Korea, 18 p.
Zurück zum Zitat Newman, J.N. (1977) MarineHydrodynamics. MIT Press, xiii + 402 p., Cambridge, MA. Newman, J.N. (1977) MarineHydrodynamics. MIT Press, xiii + 402 p., Cambridge, MA.
Zurück zum Zitat Newman, J. N. & T. Y. Wu (1973) A Generalized Slender-Body Theory for Fish-Like Forms. J. Fluid Mech., 57(4):673–693.CrossRef Newman, J. N. & T. Y. Wu (1973) A Generalized Slender-Body Theory for Fish-Like Forms. J. Fluid Mech., 57(4):673–693.CrossRef
Zurück zum Zitat O’Dea, J. F., E. J. Powers and J. Zselecsky (1992) Experimental Determination of Nonlinearities in Vertical Plane Ship Motions. Proc. 19th Symp. Naval Hydro., Seoul, Korea, pp. 73–91. O’Dea, J. F., E. J. Powers and J. Zselecsky (1992) Experimental Determination of Nonlinearities in Vertical Plane Ship Motions. Proc. 19th Symp. Naval Hydro., Seoul, Korea, pp. 73–91.
Zurück zum Zitat Ogilvie, T. F. and E. O. Tuck (1969) A rational strip theory of ship motions: Part I. Dept. of Nav. Arch. and Marine Eng., College of Eng., Univ. Michigan, Report No. 013, ix+92 p. Ogilvie, T. F. and E. O. Tuck (1969) A rational strip theory of ship motions: Part I. Dept. of Nav. Arch. and Marine Eng., College of Eng., Univ. Michigan, Report No. 013, ix+92 p.
Zurück zum Zitat Reed, A.M. and J.G.Telste (2011) Computing Hydrodynamic Forces and Moments on a Vessel without Bernoulli’s Equation. Proc. 12th Int’l Ship Stability Workshop, Washington, D.C., pp. 341–51. Reed, A.M. and J.G.Telste (2011) Computing Hydrodynamic Forces and Moments on a Vessel without Bernoulli’s Equation. Proc. 12th Int’l Ship Stability Workshop, Washington, D.C., pp. 341–51.
Zurück zum Zitat Reed, A.M. (2012) Application of Computing Hydrodynamic Forces and Moments on a Vessel without Bernoulli’s Equation.Proc. 11th International Conference on the Stability of Ships and Ocean Vehicles, Athens, Greece pp. 853–63. Reed, A.M. (2012) Application of Computing Hydrodynamic Forces and Moments on a Vessel without Bernoulli’s Equation.Proc. 11th International Conference on the Stability of Ships and Ocean Vehicles, Athens, Greece pp. 853–63.
Zurück zum Zitat Salvesen, N., E. O. Tuck & O. Faltinsen (1970) Ship motions and sea loads. Trans. SNAME, 78:250–87. Salvesen, N., E. O. Tuck & O. Faltinsen (1970) Ship motions and sea loads. Trans. SNAME, 78:250–87.
Zurück zum Zitat Sclavounos, P. D. and S. Lee (2012) A Fluid Impulse Nonlinear Theory of Ship Motions and Sea Loads. Proc. 29th Symp. Naval Hydro., Gothenburg, Sweden, 14 p. Sclavounos, P. D. and S. Lee (2012) A Fluid Impulse Nonlinear Theory of Ship Motions and Sea Loads. Proc. 29th Symp. Naval Hydro., Gothenburg, Sweden, 14 p.
Zurück zum Zitat Sclavounos, P.D., J.G.Telste and A.M.Reed (2019) Modeling of Nonlinear Vessel Responses in Steep Random Waves. Carderock Division, Naval Surface Warfare Center Report (to be published). Sclavounos, P.D., J.G.Telste and A.M.Reed (2019) Modeling of Nonlinear Vessel Responses in Steep Random Waves. Carderock Division, Naval Surface Warfare Center Report (to be published).
Zurück zum Zitat Serrin, J. (1959) Mathematical principles of classical fluid mechanics. Encyclopedia of Physics, Vol. VIII/Fluid Dynamics I, pp. 125–263, Springer-Verlag, Berlin. Serrin, J. (1959) Mathematical principles of classical fluid mechanics. Encyclopedia of Physics, Vol. VIII/Fluid Dynamics I, pp. 125–263, Springer-Verlag, Berlin.
Zurück zum Zitat Smirnov, V. I. (1964) A Course of Higher Mathematics, Vol. II: Advanced Calculus. Pergamon Press, 630 p., Oxford. Smirnov, V. I. (1964) A Course of Higher Mathematics, Vol. II: Advanced Calculus. Pergamon Press, 630 p., Oxford.
Zurück zum Zitat Telste, J.G. and W.F. Belknap (2008) Potential Flow Forces and Moments from Selected Ship Flow Codes in a Set of Numerical Experiments. Carderock Division, Naval Surface Warfare Center Report NSWCCD-50-TR-2008/040,15,240p. Telste, J.G. and W.F. Belknap (2008) Potential Flow Forces and Moments from Selected Ship Flow Codes in a Set of Numerical Experiments. Carderock Division, Naval Surface Warfare Center Report NSWCCD-50-TR-2008/040,15,240p.
Zurück zum Zitat Vugts, J. H. (1968) The hydrodynamic coefficients for swaying, heaving and rolling cylinders in a free surface, Int’l Shipbuilding Prog., 15(167):251–76.CrossRef Vugts, J. H. (1968) The hydrodynamic coefficients for swaying, heaving and rolling cylinders in a free surface, Int’l Shipbuilding Prog., 15(167):251–76.CrossRef
Zurück zum Zitat Watanabe, I., M. Ueno, H. Sawada (1989) Effects of Bow Flare Shape to the Wave Loads of a container ship. J. Society Naval Architects of Japan, 166:259–66.CrossRef Watanabe, I., M. Ueno, H. Sawada (1989) Effects of Bow Flare Shape to the Wave Loads of a container ship. J. Society Naval Architects of Japan, 166:259–66.CrossRef
Metadaten
Titel
Application of Computing Hydrodynamic Forces and Moments on a Vessel Without Bernoulli’s Equation
verfasst von
Arthur M. Reed
John G. Telste
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-00516-0_4