Skip to main content

2015 | OriginalPaper | Buchkapitel

Application of Graphene Within Optoelectronic Devices and Transistors

verfasst von : F. V. Kusmartsev, W. M. Wu, M. P. Pierpoint, K. C. Yung

Erschienen in: Applied Spectroscopy and the Science of Nanomaterials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Scientists are always yearning for new and exciting ways to unlock graphene’s true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to ‘trap’ light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene’s nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6:183–191CrossRef
2.
Zurück zum Zitat Meyer JC (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRef Meyer JC (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRef
3.
Zurück zum Zitat Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRef Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRef
5.
Zurück zum Zitat Katsnelson MI (2007) Graphene: carbon in two dimensions. Mater Today 10:20–27CrossRef Katsnelson MI (2007) Graphene: carbon in two dimensions. Mater Today 10:20–27CrossRef
6.
Zurück zum Zitat Novoselov KS et al (2005) Two-dimensional atomic crystals. PNAS 102:10451–10453CrossRef Novoselov KS et al (2005) Two-dimensional atomic crystals. PNAS 102:10451–10453CrossRef
7.
Zurück zum Zitat Savage N (2012) Materials science: super carbon. Nature 483:S30–S31CrossRef Savage N (2012) Materials science: super carbon. Nature 483:S30–S31CrossRef
8.
9.
Zurück zum Zitat O’Hare A, Kusmartsev FV, Kugel KI (2012) A stable flat form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors. Nano Lett 12:1045–1052CrossRef O’Hare A, Kusmartsev FV, Kugel KI (2012) A stable flat form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors. Nano Lett 12:1045–1052CrossRef
10.
Zurück zum Zitat Novoselov KS et al (2004) Electr Field Eff At Thin Carbon Films Sci 306:666–669 Novoselov KS et al (2004) Electr Field Eff At Thin Carbon Films Sci 306:666–669
11.
Zurück zum Zitat Novoselov KS (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200CrossRef Novoselov KS (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200CrossRef
12.
Zurück zum Zitat Iyechika Y (2010) Application of graphene to high-speed transistors: expectations and challenge. Sci Techno Trends—Q Rev 37:3776–3792 Iyechika Y (2010) Application of graphene to high-speed transistors: expectations and challenge. Sci Techno Trends—Q Rev 37:3776–3792
13.
Zurück zum Zitat Hlawacek G, Beilstein J et al (2012) Imaging ultra thin layers with helium ion microscopy: utilizing the channeling contrast mechanism. Nanotechnology 3:507–512 Hlawacek G, Beilstein J et al (2012) Imaging ultra thin layers with helium ion microscopy: utilizing the channeling contrast mechanism. Nanotechnology 3:507–512
14.
Zurück zum Zitat Robinson JA et al (2009) Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale. Nano Lett 9:2873–2876CrossRef Robinson JA et al (2009) Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale. Nano Lett 9:2873–2876CrossRef
15.
Zurück zum Zitat Gouider Trabelsi AB, Ouerghi A, Kusmartseva OE, Kusmartsev FV, Oueslati M (2013) Raman spectroscopy of four epitaxial graphene layers: macro-island grown on 4H-SiC0001 substrate and an associated strain distribution. Thin Solid Films 539:377–383CrossRef Gouider Trabelsi AB, Ouerghi A, Kusmartseva OE, Kusmartsev FV, Oueslati M (2013) Raman spectroscopy of four epitaxial graphene layers: macro-island grown on 4H-SiC0001 substrate and an associated strain distribution. Thin Solid Films 539:377–383CrossRef
16.
Zurück zum Zitat Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnol 3:210–215CrossRef Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnol 3:210–215CrossRef
17.
Zurück zum Zitat Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol 5:574–578CrossRef Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol 5:574–578CrossRef
18.
Zurück zum Zitat Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnol 3:206–209CrossRef Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnol 3:206–209CrossRef
19.
Zurück zum Zitat Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
20.
Zurück zum Zitat Morozov SV et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602CrossRef Morozov SV et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602CrossRef
21.
Zurück zum Zitat Lin YM, Farmer DB, Jenkins KA et al (2011) Enhanced performance in epitaxial graphene FETs with optimized channel morphology. IEEE Electron Device Lett 32:1343–1345CrossRef Lin YM, Farmer DB, Jenkins KA et al (2011) Enhanced performance in epitaxial graphene FETs with optimized channel morphology. IEEE Electron Device Lett 32:1343–1345CrossRef
22.
Zurück zum Zitat He QY, Wu SX, Yin ZY, Zhang H (2012) Graphene-based electronic sensors. Chem Sci 3:1764–1772CrossRef He QY, Wu SX, Yin ZY, Zhang H (2012) Graphene-based electronic sensors. Chem Sci 3:1764–1772CrossRef
23.
Zurück zum Zitat He QY et al (2011) Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5:082117 He QY et al (2011) Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5:082117
24.
Zurück zum Zitat Neto AHC, Novoselov KS (2011) New directions in science and technology: two-dimensional crystals. Rep Prog Phys 74:082501CrossRef Neto AHC, Novoselov KS (2011) New directions in science and technology: two-dimensional crystals. Rep Prog Phys 74:082501CrossRef
25.
Zurück zum Zitat Pumarol ME et al (2012) Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nano-structures. Nano Lett 12:2906–2911CrossRef Pumarol ME et al (2012) Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nano-structures. Nano Lett 12:2906–2911CrossRef
26.
28.
Zurück zum Zitat Chen S (2012) Thermal conductivity of isotopically modified graphene. Nature Mater 11:203–207CrossRef Chen S (2012) Thermal conductivity of isotopically modified graphene. Nature Mater 11:203–207CrossRef
29.
Zurück zum Zitat Rafiee J (2012) Wetting transparency of graphene. Nature Mater 11:217–222CrossRef Rafiee J (2012) Wetting transparency of graphene. Nature Mater 11:217–222CrossRef
30.
Zurück zum Zitat Engel M et al (2012) Light matter interaction in a micro-cavity controlled graphene transistor room temperature transistor based on a single carbon nanotube. Nature Commun 3:906–911CrossRef Engel M et al (2012) Light matter interaction in a micro-cavity controlled graphene transistor room temperature transistor based on a single carbon nanotube. Nature Commun 3:906–911CrossRef
31.
Zurück zum Zitat Schwierz F (2010) Graphene transistors. Nature Technol 5:487–496 Schwierz F (2010) Graphene transistors. Nature Technol 5:487–496
32.
Zurück zum Zitat Kusmartsev FV, Tsvelik AM (1985) Semi-metallic properties of a hetero-junction. JETP Lett 42:257–260 Kusmartsev FV, Tsvelik AM (1985) Semi-metallic properties of a hetero-junction. JETP Lett 42:257–260
33.
Zurück zum Zitat Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622CrossRef Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622CrossRef
34.
Zurück zum Zitat Sarma SD, Adam S, Hwang EH, Rossi E (2011) Electronic transport in two-dimensional graphene. Rev Mod Phys 83:407–470CrossRef Sarma SD, Adam S, Hwang EH, Rossi E (2011) Electronic transport in two-dimensional graphene. Rev Mod Phys 83:407–470CrossRef
35.
Zurück zum Zitat Zhou YB, Wu HC, Yu DP, Liao ZM (2013) Magneto-resistance in graphene under quantum limit regime. Appl Phys Lett 102:093116CrossRef Zhou YB, Wu HC, Yu DP, Liao ZM (2013) Magneto-resistance in graphene under quantum limit regime. Appl Phys Lett 102:093116CrossRef
36.
Zurück zum Zitat Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nature Nanotechnol 3:491–495CrossRef Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nature Nanotechnol 3:491–495CrossRef
37.
Zurück zum Zitat Koh YK, Bae MH, Cahill DG, Pop E (2010) Heat conduction across monolayer and few-layer graphenes. Nano Lett 10:4363–4368CrossRef Koh YK, Bae MH, Cahill DG, Pop E (2010) Heat conduction across monolayer and few-layer graphenes. Nano Lett 10:4363–4368CrossRef
38.
Zurück zum Zitat Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nature Nanotech. 2:605–615CrossRef Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nature Nanotech. 2:605–615CrossRef
39.
Zurück zum Zitat Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694CrossRef Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694CrossRef
40.
Zurück zum Zitat Avouris P (2010) Graphene photonics and optoelectronics. Nano Lett 10:4285–4294CrossRef Avouris P (2010) Graphene photonics and optoelectronics. Nano Lett 10:4285–4294CrossRef
41.
Zurück zum Zitat Saleh BEA, Teich MC (2007) Fundamentals of photonics, 2nd edn. Wiley Series in Pure and Applied Optics. Wiley, USA Saleh BEA, Teich MC (2007) Fundamentals of photonics, 2nd edn. Wiley Series in Pure and Applied Optics. Wiley, USA
42.
Zurück zum Zitat Kasap SO (2001) Optoelectronics and photonics: principles and practices, 1st edn. Prentice Hall, New Jersey Kasap SO (2001) Optoelectronics and photonics: principles and practices, 1st edn. Prentice Hall, New Jersey
43.
Zurück zum Zitat Koppens FHL, Chang DE, Garca de Aba jo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377CrossRef Koppens FHL, Chang DE, Garca de Aba jo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377CrossRef
44.
Zurück zum Zitat Britnell L et al (2013) Strong light-matter interactions in heterostructures of atomically thin films. Sci Comm 340:1311 Britnell L et al (2013) Strong light-matter interactions in heterostructures of atomically thin films. Sci Comm 340:1311
45.
Zurück zum Zitat Rosencher E (2002) Optoelectronics, Cambridge University Press Rosencher E (2002) Optoelectronics, Cambridge University Press
46.
Zurück zum Zitat Rudden MN, Wilson J (1993) Element of solid state physics. Wiley, New York (Chapter 4–6) Rudden MN, Wilson J (1993) Element of solid state physics. Wiley, New York (Chapter 4–6)
47.
Zurück zum Zitat Irwin JD, Kerns DV (1995) Introduction to electrical engineering. Prentice Hall, New Jersey Chapter 8–9 Irwin JD, Kerns DV (1995) Introduction to electrical engineering. Prentice Hall, New Jersey Chapter 8–9
48.
Zurück zum Zitat Turton R (2000) The physics of solids. Oxford University Press, New York Chapter 4–6 Turton R (2000) The physics of solids. Oxford University Press, New York Chapter 4–6
49.
Zurück zum Zitat Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef
50.
Zurück zum Zitat Fan X, Shen Z, Liu AQ, Kuo JL (2012) Band gap opening of graphene by doping small boron nitride domains. Nanoscale 4:2157–2165CrossRef Fan X, Shen Z, Liu AQ, Kuo JL (2012) Band gap opening of graphene by doping small boron nitride domains. Nanoscale 4:2157–2165CrossRef
51.
Zurück zum Zitat Shinde PP, Kumar Y (2011) Direct band gap opening in graphene by BN doping: Ab initio calculations. Phys Rev B 84:125401CrossRef Shinde PP, Kumar Y (2011) Direct band gap opening in graphene by BN doping: Ab initio calculations. Phys Rev B 84:125401CrossRef
52.
Zurück zum Zitat Coletti C, Riedl C, Lee DS, Krauss B, Patthey L, von Klitzing K, Smet JH, Starke U (2010) Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys Rev B 81:235401CrossRef Coletti C, Riedl C, Lee DS, Krauss B, Patthey L, von Klitzing K, Smet JH, Starke U (2010) Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys Rev B 81:235401CrossRef
53.
Zurück zum Zitat Terrones H, Lv R, Terrones M, Dresselhaus MS (2012) The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep Prog Phys 75:062501CrossRef Terrones H, Lv R, Terrones M, Dresselhaus MS (2012) The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep Prog Phys 75:062501CrossRef
54.
Zurück zum Zitat Katsnelson MI, Novoselov KS, Geim AK (2006) Chiral tunneling and the klein paradox in graphene. Nature Phys 2:620–625CrossRef Katsnelson MI, Novoselov KS, Geim AK (2006) Chiral tunneling and the klein paradox in graphene. Nature Phys 2:620–625CrossRef
55.
Zurück zum Zitat Dean CR et al (2011) Multicomponent fractional quantum Hall effect in graphene. Nature Phys 7:693–696CrossRef Dean CR et al (2011) Multicomponent fractional quantum Hall effect in graphene. Nature Phys 7:693–696CrossRef
56.
Zurück zum Zitat Novoselov KS et al (2007) Room-temperature quantum hall effect in graphene. Science 315:1379CrossRef Novoselov KS et al (2007) Room-temperature quantum hall effect in graphene. Science 315:1379CrossRef
57.
58.
Zurück zum Zitat Zalipaev VV, Maksimov DN, Linton CM, Kusmartsev FV (2013) Spectrum of localized states in graphene quantum dots and wires. Phys Lett A 377:216–221CrossRef Zalipaev VV, Maksimov DN, Linton CM, Kusmartsev FV (2013) Spectrum of localized states in graphene quantum dots and wires. Phys Lett A 377:216–221CrossRef
59.
Zurück zum Zitat Hartmann RR, Robinson NJ, Portnoi ME (2010) Smooth electron waveguides in graphene. Phys Rev B 81:245431CrossRef Hartmann RR, Robinson NJ, Portnoi ME (2010) Smooth electron waveguides in graphene. Phys Rev B 81:245431CrossRef
60.
Zurück zum Zitat Williams JR, Low T, Lundstrom MS, Marcus CM (2011) Gate-controlled guiding of electrons in graphene. Nat Nanotech 6:222–225CrossRef Williams JR, Low T, Lundstrom MS, Marcus CM (2011) Gate-controlled guiding of electrons in graphene. Nat Nanotech 6:222–225CrossRef
61.
Zurück zum Zitat Wu Q, Turpin JP, Werner DH (2012) Integrated photonic systems based on transformation optics enabled gradient index devices. Light Sci Appl 1:e38. doi:10.1038/lsa.2012.38 Wu Q, Turpin JP, Werner DH (2012) Integrated photonic systems based on transformation optics enabled gradient index devices. Light Sci Appl 1:e38. doi:10.​1038/​lsa.​2012.​38
62.
Zurück zum Zitat Downing CA, Stone DA, Portnoi ME (2011) Zero-energy states in graphene quantum dots and rings. Phys Rev B 84:155437CrossRef Downing CA, Stone DA, Portnoi ME (2011) Zero-energy states in graphene quantum dots and rings. Phys Rev B 84:155437CrossRef
63.
Zurück zum Zitat Stone DA, Downing CA, Portnoi ME (2012) Searching for confined modes in graphene channels: the variable phase method. Phys. Rev. B 86:075464CrossRef Stone DA, Downing CA, Portnoi ME (2012) Searching for confined modes in graphene channels: the variable phase method. Phys. Rev. B 86:075464CrossRef
64.
Zurück zum Zitat Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Engs 37:10–21 Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Engs 37:10–21
65.
Zurück zum Zitat Gan X et al (2013) High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett 13:691–696CrossRef Gan X et al (2013) High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett 13:691–696CrossRef
66.
Zurück zum Zitat Avouris P, Xia FN (2012) Graphene applications in electronics and photonics. Mater Res Soc 37:1225–1234CrossRef Avouris P, Xia FN (2012) Graphene applications in electronics and photonics. Mater Res Soc 37:1225–1234CrossRef
68.
Zurück zum Zitat Butcher PN, Cotter D (1991) The elements of nonlinear optics. Cambridge University Press, Cambridge Butcher PN, Cotter D (1991) The elements of nonlinear optics. Cambridge University Press, Cambridge
69.
Zurück zum Zitat Lu L, Cheong LL, Smith HI, Johnson SG, Joannopoulos JD, Soljacic M (2012) Three-dimensional photonic crystals by large-area membrane stacking. Optics Lett 37:47264728 Lu L, Cheong LL, Smith HI, Johnson SG, Joannopoulos JD, Soljacic M (2012) Three-dimensional photonic crystals by large-area membrane stacking. Optics Lett 37:47264728
70.
Zurück zum Zitat Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light, 2nd edn. Princeton University Press, Princeton Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light, 2nd edn. Princeton University Press, Princeton
71.
Zurück zum Zitat Moktadir Z, Charlton M, Pollard M, Mizuta H, Rutt H (2011) Tunable transmission in a graphene photonic crystal in mid-infrared. In: Graphene 2011 conference, Bilbao, Spain, 11–14 Apr 2011 Moktadir Z, Charlton M, Pollard M, Mizuta H, Rutt H (2011) Tunable transmission in a graphene photonic crystal in mid-infrared. In: Graphene 2011 conference, Bilbao, Spain, 11–14 Apr 2011
72.
Zurück zum Zitat Majumdar A, Kim J, Vuckovic J, Wang F (2014) Graphene for tunable nanophotonic resonators. IEEE Sel Top Quantum Electron 20:4600204 Majumdar A, Kim J, Vuckovic J, Wang F (2014) Graphene for tunable nanophotonic resonators. IEEE Sel Top Quantum Electron 20:4600204
73.
Zurück zum Zitat Mohan Kumar D (2003) Optoelectronic devices and their applications. Electronics for You, Oct 2003 Mohan Kumar D (2003) Optoelectronic devices and their applications. Electronics for You, Oct 2003
74.
Zurück zum Zitat Furchi M et al (2012) Microcavity-integrated graphene photodetector. Nano Lett 12:2773–2777CrossRef Furchi M et al (2012) Microcavity-integrated graphene photodetector. Nano Lett 12:2773–2777CrossRef
75.
Zurück zum Zitat Xia F, Mueller T, Lin YM, Garcia AV, Avouris P (2009) Ultrafast graphene photodetector. Nature Nanotech 4:839–843CrossRef Xia F, Mueller T, Lin YM, Garcia AV, Avouris P (2009) Ultrafast graphene photodetector. Nature Nanotech 4:839–843CrossRef
76.
Zurück zum Zitat Mueller T, Xia F, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nat Photonics 4:297–301CrossRef Mueller T, Xia F, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nat Photonics 4:297–301CrossRef
77.
78.
Zurück zum Zitat Nicoletti O et al (2013) Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502:80–84CrossRef Nicoletti O et al (2013) Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502:80–84CrossRef
79.
Zurück zum Zitat Xing F et al (2012) Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor. Sci Rep 2:908. doi:10.1038/srep00908 Xing F et al (2012) Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor. Sci Rep 2:908. doi:10.​1038/​srep00908
80.
Zurück zum Zitat Amin M, Farhat M, Bagci H (2013) A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci Rep 3:2105. doi:10.1038/srep02105 Amin M, Farhat M, Bagci H (2013) A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci Rep 3:2105. doi:10.​1038/​srep02105
81.
82.
Zurück zum Zitat Liu M et al (2011) A graphene-based broadband optical modulator. Nature 474:64–67CrossRef Liu M et al (2011) A graphene-based broadband optical modulator. Nature 474:64–67CrossRef
83.
Zurück zum Zitat Zhang FM, He Y, Chen X (2009) Guided modes in graphene waveguides. Appl Phys Lett 94(21):212105CrossRef Zhang FM, He Y, Chen X (2009) Guided modes in graphene waveguides. Appl Phys Lett 94(21):212105CrossRef
84.
Zurück zum Zitat Kim JT, Choi SY (2011) Graphene-based plasmonic waveguides for photonic integrated circuits. Optic Express 19:24557–24562CrossRef Kim JT, Choi SY (2011) Graphene-based plasmonic waveguides for photonic integrated circuits. Optic Express 19:24557–24562CrossRef
85.
Zurück zum Zitat Wang X, Cheng Z, Xu K, Tsang HK, Xu JB (2013) High-responsivity graphene/siliconheterostructure waveguide photodetectors. Nat Photonics 7:888–891CrossRef Wang X, Cheng Z, Xu K, Tsang HK, Xu JB (2013) High-responsivity graphene/siliconheterostructure waveguide photodetectors. Nat Photonics 7:888–891CrossRef
86.
Zurück zum Zitat Lim GK et al (2011) Giant broadband nonlinear optical absorption reponse in dispersed graphene single sheets. Nat Photonics 5:554–560CrossRef Lim GK et al (2011) Giant broadband nonlinear optical absorption reponse in dispersed graphene single sheets. Nat Photonics 5:554–560CrossRef
87.
Zurück zum Zitat Bao Q et al (2011) Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 4(3):297–307CrossRef Bao Q et al (2011) Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 4(3):297–307CrossRef
88.
Zurück zum Zitat Hendry E, Hale P, Moger J, Savchenko A, Mikhailov S (2010) Coherent nonlinear optical response of graphene. Phys Rev Lett 105:97401CrossRef Hendry E, Hale P, Moger J, Savchenko A, Mikhailov S (2010) Coherent nonlinear optical response of graphene. Phys Rev Lett 105:97401CrossRef
89.
Zurück zum Zitat Wang J, Hernandez Y, Lotya M, Coleman JN, Blau WJ (2009) Broadband nonlinear optical response of graphene dispersions. Adv Mater 21:2430–2435CrossRef Wang J, Hernandez Y, Lotya M, Coleman JN, Blau WJ (2009) Broadband nonlinear optical response of graphene dispersions. Adv Mater 21:2430–2435CrossRef
90.
Zurück zum Zitat Tutt LW, Kost A (1992) Optical limiting performance of C60 and C70 solutions. Nature 356:225–226CrossRef Tutt LW, Kost A (1992) Optical limiting performance of C60 and C70 solutions. Nature 356:225–226CrossRef
91.
Zurück zum Zitat Park J, Nam S, Lee M, Lieber CM (2011) Synthesis of monolithic graphene-graphite integrated electronics. Nat Mater 98:082117 Park J, Nam S, Lee M, Lieber CM (2011) Synthesis of monolithic graphene-graphite integrated electronics. Nat Mater 98:082117
92.
Zurück zum Zitat Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultra-smooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultra-smooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef
93.
Zurück zum Zitat Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52CrossRef Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52CrossRef
94.
Zurück zum Zitat Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449CrossRef Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449CrossRef
95.
Zurück zum Zitat Zhu HW, Xu CL, Wu DH, Wei BQ, Va jtai R, Ajayan PM (2002) Direct synthesis of long single-walled carbon nanotube strands. Science 296:884–886CrossRef Zhu HW, Xu CL, Wu DH, Wei BQ, Va jtai R, Ajayan PM (2002) Direct synthesis of long single-walled carbon nanotube strands. Science 296:884–886CrossRef
96.
Zurück zum Zitat McCann E, Fal’ko VI (2004) Symmetry of boundary conditions of the Dirac equation for electrons in carbon nanotubes. J Phys Cond Matter 16:2371–2379CrossRef McCann E, Fal’ko VI (2004) Symmetry of boundary conditions of the Dirac equation for electrons in carbon nanotubes. J Phys Cond Matter 16:2371–2379CrossRef
97.
Zurück zum Zitat Kreupl F (2012) Carbon nanotubes finally deliver. Nature 484:321–322CrossRef Kreupl F (2012) Carbon nanotubes finally deliver. Nature 484:321–322CrossRef
98.
Zurück zum Zitat Franklin AD et al (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12:758–762CrossRef Franklin AD et al (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12:758–762CrossRef
99.
Zurück zum Zitat Jang S et al (2010) Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology 21:425201CrossRef Jang S et al (2010) Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology 21:425201CrossRef
100.
Zurück zum Zitat Shulaker MM, Hills G, Patil N, Wei H, Chen HY, Wong HSP, Mitra S (2013) Carbon nanotube computer. Nature 501:526CrossRef Shulaker MM, Hills G, Patil N, Wei H, Chen HY, Wong HSP, Mitra S (2013) Carbon nanotube computer. Nature 501:526CrossRef
101.
Zurück zum Zitat Franklin AD (2013) Electronics: the road to carbon nanotube transistors. Nature 498:443CrossRef Franklin AD (2013) Electronics: the road to carbon nanotube transistors. Nature 498:443CrossRef
102.
Zurück zum Zitat Javey A, Guo J, Wang Q, Lundstorm M, Dai H (2003) Ballistic carbon nanotube transistors. Nature 424:654CrossRef Javey A, Guo J, Wang Q, Lundstorm M, Dai H (2003) Ballistic carbon nanotube transistors. Nature 424:654CrossRef
103.
Zurück zum Zitat Britnell L et al (2012) Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335:947–950CrossRef Britnell L et al (2012) Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335:947–950CrossRef
104.
Zurück zum Zitat Ponomarenko LA et al (2011) Tunable metal-insulator transition in double-layer graphene heterostructures. Nature Phys. 7:958–961CrossRef Ponomarenko LA et al (2011) Tunable metal-insulator transition in double-layer graphene heterostructures. Nature Phys. 7:958–961CrossRef
105.
Zurück zum Zitat Yang X et al. (2010) Graphene tunnelling FET and its applications in low power circuit design. In: GLSVLSI10 proceedings of the 20th symposium on great lakes symposium on VLSI, pp 263–268 Yang X et al. (2010) Graphene tunnelling FET and its applications in low power circuit design. In: GLSVLSI10 proceedings of the 20th symposium on great lakes symposium on VLSI, pp 263–268
106.
Zurück zum Zitat Michetti P, Cheli M, Iannaccone G (2010) Model of tunneling transistors based on graphene on SiC. Appl Phys Lett 96:133508CrossRef Michetti P, Cheli M, Iannaccone G (2010) Model of tunneling transistors based on graphene on SiC. Appl Phys Lett 96:133508CrossRef
107.
Zurück zum Zitat Zhao P, Chauhan J, Guo J (2009) Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett 9:684–688CrossRef Zhao P, Chauhan J, Guo J (2009) Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett 9:684–688CrossRef
108.
Zurück zum Zitat Zhang Q, Fang T, Xing H, Seabaugh A, Jena D (2008) Graphene nanoribbon tunnel transistors. IEEE Electron Dev Lett 29:1344–1346CrossRef Zhang Q, Fang T, Xing H, Seabaugh A, Jena D (2008) Graphene nanoribbon tunnel transistors. IEEE Electron Dev Lett 29:1344–1346CrossRef
109.
Zurück zum Zitat Ionescu MA, Reil H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329–337CrossRef Ionescu MA, Reil H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329–337CrossRef
110.
Zurück zum Zitat Nandkishore R, Levitov L (2011) Common-path interference and oscillatory zener tunneling in bilayer graphene p-n junctions. PNAS 108:14021–14025CrossRef Nandkishore R, Levitov L (2011) Common-path interference and oscillatory zener tunneling in bilayer graphene p-n junctions. PNAS 108:14021–14025CrossRef
111.
Zurück zum Zitat Georgiou T et al (2013) Vertical field effect transistor based on graphene-WS2 Heterostructures for flexible and transparent electronics. Nature Nanotechnol 8:100–103CrossRef Georgiou T et al (2013) Vertical field effect transistor based on graphene-WS2 Heterostructures for flexible and transparent electronics. Nature Nanotechnol 8:100–103CrossRef
112.
Zurück zum Zitat Britnell L et al (2013) Resonant tunnelling and negative differential conductance in graphene transistors. Nature Comm 4:1794CrossRef Britnell L et al (2013) Resonant tunnelling and negative differential conductance in graphene transistors. Nature Comm 4:1794CrossRef
113.
Zurück zum Zitat Nguyen VH et al (2012) Bandgap nanoengineering of graphene tunnel diodes and tunnel transistors to control the negative differential resistance. J Comput Electron 12:85–93CrossRef Nguyen VH et al (2012) Bandgap nanoengineering of graphene tunnel diodes and tunnel transistors to control the negative differential resistance. J Comput Electron 12:85–93CrossRef
114.
Zurück zum Zitat Malec CM, Davidovic D (2011) Transport in graphene tunnel junctions. J Appl Phys 109:064507CrossRef Malec CM, Davidovic D (2011) Transport in graphene tunnel junctions. J Appl Phys 109:064507CrossRef
115.
Zurück zum Zitat Cobas E, Friedman AL, Erve OMJ, Robinson JT, Jonker BT (2012) Graphene as a tunnel barrier: graphene-based magnetic tunnel junctions. Nano Lett 12:3000–3004CrossRef Cobas E, Friedman AL, Erve OMJ, Robinson JT, Jonker BT (2012) Graphene as a tunnel barrier: graphene-based magnetic tunnel junctions. Nano Lett 12:3000–3004CrossRef
116.
Zurück zum Zitat Wu Y et al (2011) High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472:74–78CrossRef Wu Y et al (2011) High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472:74–78CrossRef
117.
Zurück zum Zitat Schall D, Otto M, Neumaier D, Kurz H (2013) Integrated ring oscillators based on high- performance graphene inverters. Sci Rep 3:2592CrossRef Schall D, Otto M, Neumaier D, Kurz H (2013) Integrated ring oscillators based on high- performance graphene inverters. Sci Rep 3:2592CrossRef
118.
Zurück zum Zitat Zheng J et al (2013) Sub-10 nm gate length graphene transistors: operating at terahertz frequencies with current saturation. Sci Rep 3:1314 Zheng J et al (2013) Sub-10 nm gate length graphene transistors: operating at terahertz frequencies with current saturation. Sci Rep 3:1314
119.
Zurück zum Zitat Lin YM et al (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662CrossRef Lin YM et al (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662CrossRef
120.
Zurück zum Zitat Cheng R et al (2012) High frequency self-aligned graphene transistors with transferred gate stack. PNAS 109:11588–11592CrossRef Cheng R et al (2012) High frequency self-aligned graphene transistors with transferred gate stack. PNAS 109:11588–11592CrossRef
121.
122.
Zurück zum Zitat Pototsky A, Marchesoni F, Kusmartsev FV, Hanggi P, Savel’ev SE (2012) Relativistic Brownian motion on a graphene chip. Eur Phys J B 85:356CrossRef Pototsky A, Marchesoni F, Kusmartsev FV, Hanggi P, Savel’ev SE (2012) Relativistic Brownian motion on a graphene chip. Eur Phys J B 85:356CrossRef
123.
Zurück zum Zitat Yang Y et al (2013) Coherent nonlocal transport in quantum wires with strongly coupled electrodes. Phys Rev B 87:045403CrossRef Yang Y et al (2013) Coherent nonlocal transport in quantum wires with strongly coupled electrodes. Phys Rev B 87:045403CrossRef
Metadaten
Titel
Application of Graphene Within Optoelectronic Devices and Transistors
verfasst von
F. V. Kusmartsev
W. M. Wu
M. P. Pierpoint
K. C. Yung
Copyright-Jahr
2015
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-242-5_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.