Skip to main content
Erschienen in: Progress in Artificial Intelligence 3/2018

30.03.2018 | Regular Paper

Application of local rules and cellular automata in representing protein translation and enhancing protein folding approximation

verfasst von: Alia Madain, Abdel Latif Abu Dalhoum, Azzam Sleit

Erschienen in: Progress in Artificial Intelligence | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is self-evident that the coarse-grained view of transcription and protein translation is a result of certain computations. Although there is no single definition of the term “computation,” protein translation can be implemented over mathematical models of computers. Protein folding, however, is a combinatorial problem; it is still unknown whether a fast, accurate, and optimal folding algorithm exists. The discovery of near-optimal folds depends on approximation algorithms and heuristic searches. The hydrophobic–hydrophilic (HP) model is a simplified representation of some of the realities of protein structure. Despite the simplified representation, the folding problem in the HP model was proven to be NP-complete. We use simple and local rules to model translation and folding of proteins. Local rules imply that at a certain level of abstraction an entity can move from a state to another based on its state and information collected from its neighborhood. Also, the rules are simple in a sense that they do not require complicated computation. We use one-dimensional cellular automata to describe translation of mRNA into protein. Cellular automata are discrete models of computation that use local interactions to produce a global behavior of some sort. We will also discuss how local rules can improve approximation algorithms of protein folding and give an example of a CA that accept a certain family of strings to achieve half H–H contacts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Aleksic, Z.: Artificial life: growing complex systems. In: Bossomaier, T.R.J., Green, D.G. (eds.) Complex Systems, pp. 91–126. Cambridge University Press, Cambridge (2000). (Cambridge Books Online)CrossRef Aleksic, Z.: Artificial life: growing complex systems. In: Bossomaier, T.R.J., Green, D.G. (eds.) Complex Systems, pp. 91–126. Cambridge University Press, Cambridge (2000). (Cambridge Books Online)CrossRef
3.
Zurück zum Zitat Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(4096), 223–230 (1973)CrossRef Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(4096), 223–230 (1973)CrossRef
4.
Zurück zum Zitat Berger, B., Leighton, T.: Protein folding in the hydrophobic–hydrophilic (HP) is NP-complete. In: Proceedings of the Second Annual International Conference on Computational Molecular Biology, RECOMB ’98, pp. 30–39. ACM, New York (1998) Berger, B., Leighton, T.: Protein folding in the hydrophobic–hydrophilic (HP) is NP-complete. In: Proceedings of the Second Annual International Conference on Computational Molecular Biology, RECOMB ’98, pp. 30–39. ACM, New York (1998)
5.
Zurück zum Zitat Bokovi, B., Brest, J.: Genetic algorithm with advanced mechanisms applied to the protein structure prediction in a hydrophobic-polar model and cubic lattice. Appl. Soft Comput. 45(Supplement C), 61–70 (2016) Bokovi, B., Brest, J.: Genetic algorithm with advanced mechanisms applied to the protein structure prediction in a hydrophobic-polar model and cubic lattice. Appl. Soft Comput. 45(Supplement C), 61–70 (2016)
7.
8.
Zurück zum Zitat Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding (abstract). In: Proceedings of the Second Annual International Conference on Computational Molecular Biology, RECOMB ’98, pp. 61–62. ACM, New York (1998) Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding (abstract). In: Proceedings of the Second Annual International Conference on Computational Molecular Biology, RECOMB ’98, pp. 61–62. ACM, New York (1998)
9.
Zurück zum Zitat Crick, F.: On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163 (1958) Crick, F.: On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163 (1958)
10.
Zurück zum Zitat Crick, F.: Central dogma of molecular biology. Nature 227(5258), 561–563 (1970)CrossRef Crick, F.: Central dogma of molecular biology. Nature 227(5258), 561–563 (1970)CrossRef
11.
Zurück zum Zitat de Sales, J.A., Martins, M.L., Stariolo, D.A.: Cellular automata model for gene networks. Phys. Rev. E 55, 3262–3270 (1997)CrossRef de Sales, J.A., Martins, M.L., Stariolo, D.A.: Cellular automata model for gene networks. Phys. Rev. E 55, 3262–3270 (1997)CrossRef
12.
Zurück zum Zitat Diao, Y., Ma, D., Wen, Z., Yin, J., Xiang, J., Li, M.: Using pseudo amino acid composition to predict transmembrane regions in protein: cellular automata and lempel-ziv complexity. Amino Acids 34(1), 111–117 (2008)CrossRef Diao, Y., Ma, D., Wen, Z., Yin, J., Xiang, J., Li, M.: Using pseudo amino acid composition to predict transmembrane regions in protein: cellular automata and lempel-ziv complexity. Amino Acids 34(1), 111–117 (2008)CrossRef
13.
Zurück zum Zitat Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24(6), 1501–1509 (1985)CrossRef Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24(6), 1501–1509 (1985)CrossRef
14.
Zurück zum Zitat Dill, K.A., Bromberg, S., Yue, K., Chan, H.S., Ftebig, K.M., Yee, D.P., Thomas, P.D.: Principles of protein folding a perspective from simple exact models. Protein Sci. 4(4), 561–602 (1995)CrossRef Dill, K.A., Bromberg, S., Yue, K., Chan, H.S., Ftebig, K.M., Yee, D.P., Thomas, P.D.: Principles of protein folding a perspective from simple exact models. Protein Sci. 4(4), 561–602 (1995)CrossRef
15.
Zurück zum Zitat Drabo, H.K.: Formalization of transcription and translation processes by Turing machines. Master’s thesis, Morgan State University (2015) Drabo, H.K.: Formalization of transcription and translation processes by Turing machines. Master’s thesis, Morgan State University (2015)
16.
Zurück zum Zitat Gardner, M.: Mathematical games: the fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am. 223, 120–123 (1970)CrossRef Gardner, M.: Mathematical games: the fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am. 223, 120–123 (1970)CrossRef
17.
Zurück zum Zitat Gianni, S., Jemth, P.: Protein folding: vexing debates on a fundamental problem. Biophys. Chem. 212, 17–21 (2016)CrossRef Gianni, S., Jemth, P.: Protein folding: vexing debates on a fundamental problem. Biophys. Chem. 212, 17–21 (2016)CrossRef
18.
Zurück zum Zitat Gibson, M., Mjolsness, E.: Computational modeling of genetic and biochemical networks, vol. 8, chap. In: Bower, J. M., Bolouri, H. (eds.) Modeling the Activity of Single Genes, pp. 3–48. MIT Press, Cambridge MA (2001) Gibson, M., Mjolsness, E.: Computational modeling of genetic and biochemical networks, vol. 8, chap. In: Bower, J. M., Bolouri, H. (eds.) Modeling the Activity of Single Genes, pp. 3–48. MIT Press, Cambridge MA (2001)
19.
Zurück zum Zitat Günther, F., Möbius, A., Schreiber, M.: Structure optimisation by thermal cycling for the hydrophobic-polar lattice model of protein folding. Eur. Phys. J. Spec. Top. 226(4), 639–649 (2017)CrossRef Günther, F., Möbius, A., Schreiber, M.: Structure optimisation by thermal cycling for the hydrophobic-polar lattice model of protein folding. Eur. Phys. J. Spec. Top. 226(4), 639–649 (2017)CrossRef
20.
Zurück zum Zitat Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)CrossRef Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)CrossRef
21.
Zurück zum Zitat Hart, W.E., Istrail, S.: Fast protein folding in the hydrophobichydrophilic model within three-eighths of optimal. J. Comput. Biol. 3(1), 53–96 (1996)CrossRef Hart, W.E., Istrail, S.: Fast protein folding in the hydrophobichydrophilic model within three-eighths of optimal. J. Comput. Biol. 3(1), 53–96 (1996)CrossRef
22.
Zurück zum Zitat Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)CrossRefMATH Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)CrossRefMATH
23.
Zurück zum Zitat Kaushik, A.C., Sahi, S.: Biological complexity: ant colony meta-heuristic optimization algorithm for protein folding. Neural Comput. Appl. 28(11), 3385–3391 (2017)CrossRef Kaushik, A.C., Sahi, S.: Biological complexity: ant colony meta-heuristic optimization algorithm for protein folding. Neural Comput. Appl. 28(11), 3385–3391 (2017)CrossRef
24.
Zurück zum Zitat Kier, L.B., Seybold, P.G., Cheng, C.K.: Cellular Automata, pp. 9–38. Springer, Dordrecht (2005) Kier, L.B., Seybold, P.G., Cheng, C.K.: Cellular Automata, pp. 9–38. Springer, Dordrecht (2005)
25.
Zurück zum Zitat Koehl, P.: Protein Structure Classification, pp. 1–55. Wiley, New York (2006) Koehl, P.: Protein Structure Classification, pp. 1–55. Wiley, New York (2006)
26.
Zurück zum Zitat Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22(10), 3986–3997 (1989)CrossRef Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22(10), 3986–3997 (1989)CrossRef
27.
Zurück zum Zitat Levinthal, C.: How to fold graciously. In: Debrunnder, J.T.P., Munck, E. (eds.) Mossbauer Spectroscopy in Biological Systems: Proceedings of a Meeting Held at Allerton House, Monticello, Ill, pp. 22–24. University of Illinois Press (1969) Levinthal, C.: How to fold graciously. In: Debrunnder, J.T.P., Munck, E. (eds.) Mossbauer Spectroscopy in Biological Systems: Proceedings of a Meeting Held at Allerton House, Monticello, Ill, pp. 22–24. University of Illinois Press (1969)
28.
Zurück zum Zitat Llanes, A., Vélez, C., Sánchez, A.M., Pérez-Sánchez, H., Cecilia, J.M.: Parallel Ant Colony Optimization for the HP Protein Folding Problem, pp. 615–626. Springer, New York (2016) Llanes, A., Vélez, C., Sánchez, A.M., Pérez-Sánchez, H., Cecilia, J.M.: Parallel Ant Colony Optimization for the HP Protein Folding Problem, pp. 615–626. Springer, New York (2016)
29.
Zurück zum Zitat Lopes, H.S., Bitello, R.: A differential evolution approach for protein folding using a lattice model. J. Comput. Sci. Technol. 22(6), 904–908 (2007)CrossRef Lopes, H.S., Bitello, R.: A differential evolution approach for protein folding using a lattice model. J. Comput. Sci. Technol. 22(6), 904–908 (2007)CrossRef
30.
Zurück zum Zitat Lopes, H.S.: Evolutionary algorithms for the protein folding problem: A review and current trends. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.E. (eds.) Computational intelligence in biomedicine and bioinformatics. Studies in computational intelligence, vol. 151, pp. 297–315. Springer, Berlin, Heidelberg (2008) Lopes, H.S.: Evolutionary algorithms for the protein folding problem: A review and current trends. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.E. (eds.) Computational intelligence in biomedicine and bioinformatics. Studies in computational intelligence, vol. 151, pp. 297–315. Springer, Berlin, Heidelberg (2008)
31.
Zurück zum Zitat Madain, A., Abu Dalhoum, A.L., Hiary, H., Ortega, A., Alfonseca, M.: Audio scrambling technique based on cellular automata. Multimed. Tools Appl. 71(3), 1803–1822 (2014)CrossRef Madain, A., Abu Dalhoum, A.L., Hiary, H., Ortega, A., Alfonseca, M.: Audio scrambling technique based on cellular automata. Multimed. Tools Appl. 71(3), 1803–1822 (2014)CrossRef
32.
Zurück zum Zitat Madain, A., Abu Dalhoum, A.L., Sleit, A.: Computational modeling of proteins based on cellular automata. Int. J. Adv. Comput. Sci. Appl. 7(7), 491–498 (2016) Madain, A., Abu Dalhoum, A.L., Sleit, A.: Computational modeling of proteins based on cellular automata. Int. J. Adv. Comput. Sci. Appl. 7(7), 491–498 (2016)
33.
Zurück zum Zitat Madain, A., Abu Dalhoum, A.L., Sleit, A.: Potentials and challenges of building computational models of proteins based on cellular automata. Int. J. Comput. Sci. Inf. Secur. 14(9), 1–6 (2016) Madain, A., Abu Dalhoum, A.L., Sleit, A.: Potentials and challenges of building computational models of proteins based on cellular automata. Int. J. Comput. Sci. Inf. Secur. 14(9), 1–6 (2016)
34.
Zurück zum Zitat Madain, A., Abu Dalhoum, A.L., Sleit, A.: Protein folding in the two-dimensional hydrophobic polar model based on cellular automata and local rules. Int. J. Comput. Sci. Netw. Secur. 16(9), 48–54 (2016) Madain, A., Abu Dalhoum, A.L., Sleit, A.: Protein folding in the two-dimensional hydrophobic polar model based on cellular automata and local rules. Int. J. Comput. Sci. Netw. Secur. 16(9), 48–54 (2016)
35.
Zurück zum Zitat Mauri, G., Pavesi, G.: Approximation algorithms for string folding problems. In: Proceedings of the International Conference IFIP on Theoretical Computer Science, Exploring New Frontiers of Theoretical Informatics, TCS ’00, pp. 45–58. Springer, London (2000) Mauri, G., Pavesi, G.: Approximation algorithms for string folding problems. In: Proceedings of the International Conference IFIP on Theoretical Computer Science, Exploring New Frontiers of Theoretical Informatics, TCS ’00, pp. 45–58. Springer, London (2000)
36.
Zurück zum Zitat Mizas, C., Sirakoulis, G., Mardiris, V., Karafyllidis, I., Glykos, N., Sandaltzopoulos, R.: Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction? Biosystems 92(1), 61–68 (2008)CrossRef Mizas, C., Sirakoulis, G., Mardiris, V., Karafyllidis, I., Glykos, N., Sandaltzopoulos, R.: Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction? Biosystems 92(1), 61–68 (2008)CrossRef
37.
Zurück zum Zitat Newman, A.: A new algorithm for protein folding in the HP model. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pp. 876–884. Society for Industrial and Applied Mathematics, Philadelphia (2002) Newman, A.: A new algorithm for protein folding in the HP model. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pp. 876–884. Society for Industrial and Applied Mathematics, Philadelphia (2002)
38.
Zurück zum Zitat Nishio, H.: How does the neighborhood affect the global behavior of cellular automata? In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) Cellular Automata. Lecture Notes in Computer Science, vol. 4173, pp. 122–130. Springer, Berlin (2006)CrossRef Nishio, H.: How does the neighborhood affect the global behavior of cellular automata? In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) Cellular Automata. Lecture Notes in Computer Science, vol. 4173, pp. 122–130. Springer, Berlin (2006)CrossRef
40.
Zurück zum Zitat Santos, J., Villot, P., Dieguez, M.: Cellular automata for modeling protein folding using the hp model. In: Evolutionary Computation (CEC), 2013 IEEE Congress, pp. 1586–1593 (2013) Santos, J., Villot, P., Dieguez, M.: Cellular automata for modeling protein folding using the hp model. In: Evolutionary Computation (CEC), 2013 IEEE Congress, pp. 1586–1593 (2013)
41.
Zurück zum Zitat Santos, J., Villot, P., Diéguez, M.: Emergent protein folding modeled with evolved neural cellular automata using the 3d HP model. J. Comput. Biol. 21(11), 823–845 (2014)CrossRef Santos, J., Villot, P., Diéguez, M.: Emergent protein folding modeled with evolved neural cellular automata using the 3d HP model. J. Comput. Biol. 21(11), 823–845 (2014)CrossRef
42.
Zurück zum Zitat Sarkar, P.: A brief history of cellular automata. ACM Comput. Surv. 32(1), 80–107 (2000)CrossRef Sarkar, P.: A brief history of cellular automata. ACM Comput. Surv. 32(1), 80–107 (2000)CrossRef
43.
Zurück zum Zitat Sirakoulis, G., Karafyllidis, I., Mizas, C., Mardiris, V., Thanailakis, A., Tsalides, P.: A cellular automaton model for the study of dna sequence evolution. Comput. Biol. Med. 33(5), 439–453 (2003)CrossRef Sirakoulis, G., Karafyllidis, I., Mizas, C., Mardiris, V., Thanailakis, A., Tsalides, P.: A cellular automaton model for the study of dna sequence evolution. Comput. Biol. Med. 33(5), 439–453 (2003)CrossRef
44.
Zurück zum Zitat Takata, D., Isokawa, T., Matsui, N., Peper, F.: Modeling chemical reactions in protein synthesis by a Brownian cellular automaton. In: 2013 First International Symposium on Computing and Networking, pp. 527–532 (2013) Takata, D., Isokawa, T., Matsui, N., Peper, F.: Modeling chemical reactions in protein synthesis by a Brownian cellular automaton. In: 2013 First International Symposium on Computing and Networking, pp. 527–532 (2013)
45.
Zurück zum Zitat Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. J. Mol. Biol. 231(1), 75–81 (1993)CrossRef Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. J. Mol. Biol. 231(1), 75–81 (1993)CrossRef
46.
Zurück zum Zitat Wang, S., Wu, L., Huo, Y., Wu, X., Wang, H., Zhang, Y.: Predict Two-Dimensional Protein Folding Based on Hydrophobic-Polar Lattice Model and Chaotic Clonal Genetic Algorithm, pp. 10–17. Springer, New York (2016) Wang, S., Wu, L., Huo, Y., Wu, X., Wang, H., Zhang, Y.: Predict Two-Dimensional Protein Folding Based on Hydrophobic-Polar Lattice Model and Chaotic Clonal Genetic Algorithm, pp. 10–17. Springer, New York (2016)
47.
Zurück zum Zitat Wooley, J.C., Lin., H.S.: Computational modeling and simulation as enablers for biological discovery. In: Catalyzing Inquiry at the Interface of Computing and Biology, pp. 117–202. National Academies Press (US), Washington (2005) Wooley, J.C., Lin., H.S.: Computational modeling and simulation as enablers for biological discovery. In: Catalyzing Inquiry at the Interface of Computing and Biology, pp. 117–202. National Academies Press (US), Washington (2005)
48.
Zurück zum Zitat Xiao, X., Ling, W.: Using cellular automata images to predict protein structural classes. In: Bioinformatics and Biomedical Engineering, 2007. ICBBE 2007. The 1st International Conference, pp. 346–349 (2007) Xiao, X., Ling, W.: Using cellular automata images to predict protein structural classes. In: Bioinformatics and Biomedical Engineering, 2007. ICBBE 2007. The 1st International Conference, pp. 346–349 (2007)
49.
Zurück zum Zitat Xiao, X., Shao, S., Ding, Y., Huang, Z., Chou, K.C.: Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 30(1), 49–54 (2006)CrossRef Xiao, X., Shao, S., Ding, Y., Huang, Z., Chou, K.C.: Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 30(1), 49–54 (2006)CrossRef
50.
Zurück zum Zitat Xiao, X., Wang, P., Chou, K.C.: GPCR-CA: a cellular automaton image approach for predicting g-protein-coupled receptor functional classes. J. Comput. Chem. 30(9), 1414–1423 (2008)CrossRef Xiao, X., Wang, P., Chou, K.C.: GPCR-CA: a cellular automaton image approach for predicting g-protein-coupled receptor functional classes. J. Comput. Chem. 30(9), 1414–1423 (2008)CrossRef
51.
Zurück zum Zitat Xiao, X., Wang, P., Chou, K.C.: Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automaton image. J. Theor. Biol. 254(3), 691–696 (2008)MathSciNetCrossRef Xiao, X., Wang, P., Chou, K.C.: Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automaton image. J. Theor. Biol. 254(3), 691–696 (2008)MathSciNetCrossRef
Metadaten
Titel
Application of local rules and cellular automata in representing protein translation and enhancing protein folding approximation
verfasst von
Alia Madain
Abdel Latif Abu Dalhoum
Azzam Sleit
Publikationsdatum
30.03.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Progress in Artificial Intelligence / Ausgabe 3/2018
Print ISSN: 2192-6352
Elektronische ISSN: 2192-6360
DOI
https://doi.org/10.1007/s13748-018-0146-8

Weitere Artikel der Ausgabe 3/2018

Progress in Artificial Intelligence 3/2018 Zur Ausgabe