Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2007

01.08.2007

Application of power loss calculation to estimate the specific contact resistance of the screen-printed silver ohmic contacts of the large area silicon solar cells

verfasst von: P. N. Vinod

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The establishment of a suitable contact formation methodology is a critical part of the technological development of any metal-to-semiconductor contact structure. Many test structures and methodologies have been proposed to estimate the specific contact resistance (ρc) of the planar ohmic contacts formed on the heavily doped semiconductor surface. These test structures are usually processed on the same wafer to monitor a particular process. In this study, new experimental procedure has been evolved to assess the value of ρc of the screen-printed front silver (Ag) thick-film metal contact to the silicon surface. The essential feature of this methodology is that it is an iteration technique based on the calculation of power loss associated with various resistive components of the solar cell normalized to the unit cell area. Therefore, this method avoids the complexity of making the design of any lay out of a standard contact resistance test structure like transmission line model (TLM) or Kelvin resistor, etc. It was shown that value of specific contact resistance of the order of 1.0 × 10−5 Ω−cm 2 is measured for the Ag metal contacts formed on the n+ silicon surface. This value is much lower than the ρc data previously reported for the screen-printed Ag contacts. The sintering process of the front metal contact structure at different furnace setting is carried out to understand the possible wet interaction and metal contact formation as a function of the firing. Therefore, the study is further extended to study the peak firing temperature dependence of the ρc of screen-printed Ag metal contacts. It will help to assess the specific contact resistance of the ohmic contacts as a function of firing temperature of sintering process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The term sintering is used to describe as a high temperature annealing step that results in the formation of silicon-metal alloy structure on the heavily doped silicon surface in air ambient condition.
 
Literatur
1.
Zurück zum Zitat P. Doshi, J. Meija, K. Tate, A. Rohatgi, IEEE Trans. Electron Devices. ED-44(9), 1417–1423 (1997)CrossRef P. Doshi, J. Meija, K. Tate, A. Rohatgi, IEEE Trans. Electron Devices. ED-44(9), 1417–1423 (1997)CrossRef
2.
Zurück zum Zitat P.N. Vinod, B.C. Chakravarty, L. Mohan, S.N. Singh, Proceeding of the X International Workshop on the Semiconductor Devices (IWPSD) (Narosa Publications (New Delhi), IIT Delhi, New Delhi, 1999), pp. 1245–1250, Dec 13–17 P.N. Vinod, B.C. Chakravarty, L. Mohan, S.N. Singh, Proceeding of the X International Workshop on the Semiconductor Devices (IWPSD) (Narosa Publications (New Delhi), IIT Delhi, New Delhi, 1999), pp. 1245–1250, Dec 13–17
3.
Zurück zum Zitat W. Shockley, Report No. AL-TOR-64-207, Air Force Avionics Laboratory, Wright Patterson, Air Force Base, Ohio, USA, September (1964) W. Shockley, Report No. AL-TOR-64-207, Air Force Avionics Laboratory, Wright Patterson, Air Force Base, Ohio, USA, September (1964)
4.
Zurück zum Zitat S.M. Sze, Physics of the Semiconductor Devices (Wiley, NY, 1981) S.M. Sze, Physics of the Semiconductor Devices (Wiley, NY, 1981)
5.
Zurück zum Zitat D.L. Meier, D.K. Schroder, IEEE Trans. Electron Devices. ED-31, 647–653 (1984) D.L. Meier, D.K. Schroder, IEEE Trans. Electron Devices. ED-31, 647–653 (1984)
6.
Zurück zum Zitat H.H. Berger, J. Electrochem. Soc. 119, 507–514 April (1972); H.H. Berger, Solid State Electronics 15, 145–158 H.H. Berger, J. Electrochem. Soc. 119, 507–514 April (1972); H.H. Berger, Solid State Electronics 15, 145–158
7.
Zurück zum Zitat G.K. Reeves, H.B. Harrison, IEEE Trans. Electron Device Lett. EDL-18(25), 1083–1085 (1982)CrossRef G.K. Reeves, H.B. Harrison, IEEE Trans. Electron Device Lett. EDL-18(25), 1083–1085 (1982)CrossRef
8.
Zurück zum Zitat S.J. Procter, L.W. Lindholm, J.A. Maze, IEEE Trans. Electron Devices, ED-30, 1535–1542 (1983) S.J. Procter, L.W. Lindholm, J.A. Maze, IEEE Trans. Electron Devices, ED-30, 1535–1542 (1983)
9.
Zurück zum Zitat J. Chen, W.L. Oldham, IEEE Trans. Electron Device Lett. EDL-5, 178–180 May (1984) J. Chen, W.L. Oldham, IEEE Trans. Electron Device Lett. EDL-5, 178–180 May (1984)
10.
Zurück zum Zitat P.N. Vinod, B.C. Chakravarty, K. Ravi, L. Mohan, S.N. Singh, Semiconductor Sci. Technol. 15, 286–290 (2000)CrossRef P.N. Vinod, B.C. Chakravarty, K. Ravi, L. Mohan, S.N. Singh, Semiconductor Sci. Technol. 15, 286–290 (2000)CrossRef
11.
12.
Zurück zum Zitat F.M. Smits, Bell System Tech. J. 37, 711–718 (1958). F.M. Smits, Bell System Tech. J. 37, 711–718 (1958).
13.
Zurück zum Zitat M.A. Green, High Efficiency Silicon Solar Cells (Trans Tech Publications, Switzerland 1987) M.A. Green, High Efficiency Silicon Solar Cells (Trans Tech Publications, Switzerland 1987)
14.
Zurück zum Zitat A.G. Aberle, S.R. Wenham, M.A. Green, Proc. 23rd IEEE Photovoltaic Specialists Conference (PVSC) (IEEE New York Inc., 1993) pp. 133–137 A.G. Aberle, S.R. Wenham, M.A. Green, Proc. 23rd IEEE Photovoltaic Specialists Conference (PVSC) (IEEE New York Inc., 1993) pp. 133–137
15.
Zurück zum Zitat S. Silvestre, D. Patron, L. Castener, P. Ashburn Proc. 25th IEEE Photovoltaic Specialists Conference (PVSC) (Washington DC, P. 497, IEEE, New York, 1996) S. Silvestre, D. Patron, L. Castener, P. Ashburn Proc. 25th IEEE Photovoltaic Specialists Conference (PVSC) (Washington DC, P. 497, IEEE, New York, 1996)
16.
Zurück zum Zitat P.N. Vinod, Ph.D Thesis. University of Delhi, India, (2003) P.N. Vinod, Ph.D Thesis. University of Delhi, India, (2003)
17.
Zurück zum Zitat D.K. Schroder, D.L. Meier, IEEE Trans. Electron Devices ED-31, 637–647 (1984) D.K. Schroder, D.L. Meier, IEEE Trans. Electron Devices ED-31, 637–647 (1984)
18.
Zurück zum Zitat C. Ballif, D.M. Huljic, G. Willeke, A. Hessler-Wyser, Appl. Phys. Lett. 82(12), 1878–1880 (2003)CrossRef C. Ballif, D.M. Huljic, G. Willeke, A. Hessler-Wyser, Appl. Phys. Lett. 82(12), 1878–1880 (2003)CrossRef
19.
Zurück zum Zitat G. Schubert, B. Fischer, P. Fath, Proc. Photovoltaics in Europe Conf, Rome, pp. 343–346 (2002) G. Schubert, B. Fischer, P. Fath, Proc. Photovoltaics in Europe Conf, Rome, pp. 343–346 (2002)
20.
Zurück zum Zitat C. Ballif, D.M. Huljic, A. Hessler-Wyser, G. Willeke, Proc. 29th IEEE Photovoltaic Specialists Conference (PVSC) (Glasgow, U.K, 2002), pp. 360–363 C. Ballif, D.M. Huljic, A. Hessler-Wyser, G. Willeke, Proc. 29th IEEE Photovoltaic Specialists Conference (PVSC) (Glasgow, U.K, 2002), pp. 360–363
21.
Zurück zum Zitat G. Schubert, F. Huster, P. Fath, Proc. 14th Photovoltaic Solar Energy Convention (PVSEC) (Bangkok, Thailand, 2004), pp. 441–445 G. Schubert, F. Huster, P. Fath, Proc. 14th Photovoltaic Solar Energy Convention (PVSEC) (Bangkok, Thailand, 2004), pp. 441–445
22.
Zurück zum Zitat R.W. Olesinski, G.K. Abbaschian, in Binary Alloy Phase Diagrams, 2nd edn. ed. by T.B. Massalski, (1–3 American Society for Metals, Metals Park, Ohio, USA, 1992) R.W. Olesinski, G.K. Abbaschian, in Binary Alloy Phase Diagrams, 2nd edn. ed. by T.B. Massalski, (1–3 American Society for Metals, Metals Park, Ohio, USA, 1992)
23.
Zurück zum Zitat M.M. Halili, A. Rohatgi, C. Khadikar, S. Kim, J. Pham, S. Salami, A. Sheikh, S. Sridharan, in Proc. European Council Photovoltaic Solar Energy Conf (EC PCSEC), 7–11 June (Paris, France, 2004), pp. 1300–1303 M.M. Halili, A. Rohatgi, C. Khadikar, S. Kim, J. Pham, S. Salami, A. Sheikh, S. Sridharan, in Proc. European Council Photovoltaic Solar Energy Conf (EC PCSEC), 7–11 June (Paris, France, 2004), pp. 1300–1303
24.
Zurück zum Zitat B. Thuillier, S. Berger, J.P. Boyeaux, A. Laugier, Proc. 28th IEEE Photovoltaic Specialists Conf (PVSC) (Anchorage, 2000), pp. 411–413 B. Thuillier, S. Berger, J.P. Boyeaux, A. Laugier, Proc. 28th IEEE Photovoltaic Specialists Conf (PVSC) (Anchorage, 2000), pp. 411–413
25.
Zurück zum Zitat G. Grupp, D.M. Huljic, R. Prue, G. Willeke, J. Luther, Proc. 20th European Photovoltaic Solar Energy Conference And Exhibition (EC PVSEC) (Barcelona, Spain, 6–10 June, 2005) G. Grupp, D.M. Huljic, R. Prue, G. Willeke, J. Luther, Proc. 20th European Photovoltaic Solar Energy Conference And Exhibition (EC PVSEC) (Barcelona, Spain, 6–10 June, 2005)
26.
Zurück zum Zitat C.Y. Chang, Y.K. Fang, S.M. Sze, Solid State Electronics 14, 541–550 (1972)CrossRef C.Y. Chang, Y.K. Fang, S.M. Sze, Solid State Electronics 14, 541–550 (1972)CrossRef
27.
28.
Zurück zum Zitat M.S. Tyagi, Introduction of Semiconductor Physics and Devices (Wiley, 2002) M.S. Tyagi, Introduction of Semiconductor Physics and Devices (Wiley, 2002)
29.
Zurück zum Zitat F.A. Trumbore, Bell System Tech J 37, 205–218 (1960); J.D. Plummer, P.B. Griffin, Proc. of IEEE 89(3), 240–258, April (2001) F.A. Trumbore, Bell System Tech J 37, 205–218 (1960); J.D. Plummer, P.B. Griffin, Proc. of IEEE 89(3), 240–258, April (2001)
30.
Zurück zum Zitat B.C. Chakravarty, B.K. Das, S.N. Singh, S.K. Sharma, S.U.M. Rao, R. Kumar, B.R. Chakravarty, J. Mat. Sci. Lett. 12, 447–451 (1993)CrossRef B.C. Chakravarty, B.K. Das, S.N. Singh, S.K. Sharma, S.U.M. Rao, R. Kumar, B.R. Chakravarty, J. Mat. Sci. Lett. 12, 447–451 (1993)CrossRef
31.
Zurück zum Zitat S.B. Rane, T. Seth, G.J. Phatak, D.P. Amelneker, J. Mat. Sci. Mat. Electronics 15, 103–106 (2004)CrossRef S.B. Rane, T. Seth, G.J. Phatak, D.P. Amelneker, J. Mat. Sci. Mat. Electronics 15, 103–106 (2004)CrossRef
Metadaten
Titel
Application of power loss calculation to estimate the specific contact resistance of the screen-printed silver ohmic contacts of the large area silicon solar cells
verfasst von
P. N. Vinod
Publikationsdatum
01.08.2007
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2007
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-007-9210-z

Weitere Artikel der Ausgabe 8/2007

Journal of Materials Science: Materials in Electronics 8/2007 Zur Ausgabe

Neuer Inhalt