Skip to main content
Erschienen in: Journal of Materials Science 11/2019

25.02.2019 | Computation and theory

Application of radial basis neural network to transform viscoelastic to elastic properties for materials with multiple thermal transitions

verfasst von: Xianbo Xu, Nikhil Gupta

Erschienen in: Journal of Materials Science | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic mechanical analysis is a method to characterize the frequency domain viscoelastic properties including storage and loss moduli. Methods have been developed to transform these properties to time domain and extract elastic modulus over strain rates, which is useful in mechanical design. However, application of these methods becomes increasingly complex for materials containing multiple thermal transitions. Neural networks can provide advantages in solving such problems. As the form of radial basis neural network satisfies the form obtained from time–temperature superposition principle, it is used in the present work with back-propagation to establish the master relation of loss modulus. The influence of regulation factor and neuron number is investigated to find the best parameter set. Then, storage modulus is divided into frequency-dependent and frequency-independent part. Both parts are individually calculated from loss modulus using Kramers–Kronig relation. The linear integral relation of viscoelasticity can transform the storage modulus into time-domain relaxation modulus, which can predict the stress response with specific strain history and temperature. The transformation is tested on ethylene–vinyl acetate. The time-domain elastic properties are extracted and compared with those from tensile tests at room temperature. The transformation achieves an average root mean square error of 3.3% and a maximum error 4.9% between strain rates 10−6 to 10−2 s−1. This process can predict the properties at a wide range of temperatures and frequencies from a single specimen and can be implemented using parallel computing, which is promising for complex material systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Lai J-C, Li L, Wang D-P, Zhang M-H, Mo S-R, Wang X, Zeng K-Y, Li C-H, Jiang Q, You X-Z, Zuo J-L (2018) A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat Commun 9(1):2725CrossRef Lai J-C, Li L, Wang D-P, Zhang M-H, Mo S-R, Wang X, Zeng K-Y, Li C-H, Jiang Q, You X-Z, Zuo J-L (2018) A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat Commun 9(1):2725CrossRef
4.
Zurück zum Zitat Helgeson ME, Moran SE, An HZ, Doyle PS (2012) Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions. Nat Mater 11:344CrossRef Helgeson ME, Moran SE, An HZ, Doyle PS (2012) Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions. Nat Mater 11:344CrossRef
6.
Zurück zum Zitat Lieleg O, Kayser J, Brambilla G, Cipelletti L, Bausch AR (2011) Slow dynamics and internal stress relaxation in bundled cytoskeletal networks. Nat Mater 10:236CrossRef Lieleg O, Kayser J, Brambilla G, Cipelletti L, Bausch AR (2011) Slow dynamics and internal stress relaxation in bundled cytoskeletal networks. Nat Mater 10:236CrossRef
8.
Zurück zum Zitat Ferry JD (1980) Dependence of viscoelastic behavior on temperature and pressure. Viscoelastic properties of polymers. Wiley, New York Ferry JD (1980) Dependence of viscoelastic behavior on temperature and pressure. Viscoelastic properties of polymers. Wiley, New York
9.
Zurück zum Zitat Zeltmann SE, Bharath Kumar BR, Doddamani M, Gupta N (2016) Prediction of strain rate sensitivity of high density polyethylene using integral transform of dynamic mechanical analysis data. Polymer 101:1–6CrossRef Zeltmann SE, Bharath Kumar BR, Doddamani M, Gupta N (2016) Prediction of strain rate sensitivity of high density polyethylene using integral transform of dynamic mechanical analysis data. Polymer 101:1–6CrossRef
10.
Zurück zum Zitat Zeltmann SE, Prakash KA, Doddamani M, Gupta N (2017) Prediction of modulus at various strain rates from dynamic mechanical analysis data for polymer matrix composites. Compos B Eng 120:27–34CrossRef Zeltmann SE, Prakash KA, Doddamani M, Gupta N (2017) Prediction of modulus at various strain rates from dynamic mechanical analysis data for polymer matrix composites. Compos B Eng 120:27–34CrossRef
11.
Zurück zum Zitat Xu X, Gupta N (2018) Determining elastic modulus from dynamic mechanical analysis: a general model based on loss modulus data. Materialia 4:221–226CrossRef Xu X, Gupta N (2018) Determining elastic modulus from dynamic mechanical analysis: a general model based on loss modulus data. Materialia 4:221–226CrossRef
12.
Zurück zum Zitat Romero PA, Zheng SF, Cuitiño AM (2008) Modeling the dynamic response of visco-elastic open-cell foams. J Mech Phys Solids 56(5):1916–1943CrossRef Romero PA, Zheng SF, Cuitiño AM (2008) Modeling the dynamic response of visco-elastic open-cell foams. J Mech Phys Solids 56(5):1916–1943CrossRef
13.
Zurück zum Zitat Luong DD, Pinisetty D, Gupta N (2013) Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: experimental investigation and critical review of state of the art. Compos B Eng 44(1):403–416CrossRef Luong DD, Pinisetty D, Gupta N (2013) Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: experimental investigation and critical review of state of the art. Compos B Eng 44(1):403–416CrossRef
14.
Zurück zum Zitat Peroni L, Scapin M, Fichera C, Lehmhus D, Weise J, Baumeister J, Avalle M (2014) Investigation of the mechanical behaviour of AISI 316L stainless steel syntactic foams at different strain-rates. Compos B Eng 66:430–442CrossRef Peroni L, Scapin M, Fichera C, Lehmhus D, Weise J, Baumeister J, Avalle M (2014) Investigation of the mechanical behaviour of AISI 316L stainless steel syntactic foams at different strain-rates. Compos B Eng 66:430–442CrossRef
15.
Zurück zum Zitat Koomson C, Zeltmann SE, Gupta N (2018) Strain rate sensitivity of polycarbonate and vinyl ester from dynamic mechanical analysis experiments. Adv Compos Hybrid Mater 1(2):341–346CrossRef Koomson C, Zeltmann SE, Gupta N (2018) Strain rate sensitivity of polycarbonate and vinyl ester from dynamic mechanical analysis experiments. Adv Compos Hybrid Mater 1(2):341–346CrossRef
16.
Zurück zum Zitat Xu X, Koomson C, Doddamani M, Behera RK, Gupta N (2019) Extracting elastic modulus at different strain rates and temperatures from dynamic mechanical analysis data: a study on nanocomposites. Compos B Eng 159:346–354CrossRef Xu X, Koomson C, Doddamani M, Behera RK, Gupta N (2019) Extracting elastic modulus at different strain rates and temperatures from dynamic mechanical analysis data: a study on nanocomposites. Compos B Eng 159:346–354CrossRef
17.
Zurück zum Zitat Jia Z, Amirkhizi AV, Nantasetphong W, Nemat-Nasser S (2016) Experimentally-based relaxation modulus of polyurea and its composites. Mech Time-Dependent Mater 20(2):155–174CrossRef Jia Z, Amirkhizi AV, Nantasetphong W, Nemat-Nasser S (2016) Experimentally-based relaxation modulus of polyurea and its composites. Mech Time-Dependent Mater 20(2):155–174CrossRef
18.
Zurück zum Zitat Lin KSC, Aklonis JJ (1980) Evaluation of the stress-relaxation modulus for materials with rapid relaxation rates. J Appl Phys 51(10):5125–5130CrossRef Lin KSC, Aklonis JJ (1980) Evaluation of the stress-relaxation modulus for materials with rapid relaxation rates. J Appl Phys 51(10):5125–5130CrossRef
19.
Zurück zum Zitat Xu X, Gupta N (2018) Determining elastic modulus from dynamic mechanical analysis data: reduction in experiments using adaptive surrogate modeling based transform. Polymer 157:166–171CrossRef Xu X, Gupta N (2018) Determining elastic modulus from dynamic mechanical analysis data: reduction in experiments using adaptive surrogate modeling based transform. Polymer 157:166–171CrossRef
21.
Zurück zum Zitat Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular and materials science. Nature 559(7715):547–555CrossRef Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular and materials science. Nature 559(7715):547–555CrossRef
27.
Zurück zum Zitat Booij HC, Thoone GPJM (1982) Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities. Rheol Acta 21(1):15–24CrossRef Booij HC, Thoone GPJM (1982) Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities. Rheol Acta 21(1):15–24CrossRef
28.
Zurück zum Zitat Dorffner G (1992) EuclidNet—a multilayer neural network using the euclidian distance as propagation rule. In: Aleksander I, Taylor J (eds) Artificial neural networks. North-Holland, Amsterdam, pp 1633–1636CrossRef Dorffner G (1992) EuclidNet—a multilayer neural network using the euclidian distance as propagation rule. In: Aleksander I, Taylor J (eds) Artificial neural networks. North-Holland, Amsterdam, pp 1633–1636CrossRef
29.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning. Adaptive computation and machine learning series. The MIT Press, Cambridge Goodfellow I, Bengio Y, Courville A (2016) Deep learning. Adaptive computation and machine learning series. The MIT Press, Cambridge
30.
Zurück zum Zitat Christensen RM (1982) Theory of viscoelasticity: an introduction. Dover Civil and Mechanical Engineering, 2nd edn. Academic Press, New York Christensen RM (1982) Theory of viscoelasticity: an introduction. Dover Civil and Mechanical Engineering, 2nd edn. Academic Press, New York
Metadaten
Titel
Application of radial basis neural network to transform viscoelastic to elastic properties for materials with multiple thermal transitions
verfasst von
Xianbo Xu
Nikhil Gupta
Publikationsdatum
25.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03481-0

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Science 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.