Skip to main content

2022 | OriginalPaper | Buchkapitel

6. Application

verfasst von : Sanjay Kumar

Erschienen in: Additive Manufacturing Solutions

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conformal cooling channel is one of the oldest applications of additive manufacturing (AM) and is one of the drivers for the widespread use of AM. The difficulty associated with its fabrication by conventional manufacturing (CM) proves why AM is useful. Repair and refurbishment have taken new meaning with the advent of AM, the difference between repair and refurbishment is often obscured, the chapter clarifies the difference.
Powder bed fusion (PBF) is the best AM to make complex products, which is therefore gaining widespread use in industries. This helps AM grow but whether this is favorable for sustainable environment. The chapter lists optimum and non-optimum uses of AM.
Answers of six questions related to general applications, repair and refurbishment, conformal cooling channel, application in casting, sustainability, and optimum uses of PBF are given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hopkins, N., Jiang, L., & Brooks, H. (2021). Energy consumption of common desktop additive manufacturing technologies. Clean Engineering Technology, 2, 100068.CrossRef Hopkins, N., Jiang, L., & Brooks, H. (2021). Energy consumption of common desktop additive manufacturing technologies. Clean Engineering Technology, 2, 100068.CrossRef
2.
Zurück zum Zitat Durão, L. F. C. S., Christ, A., Zancul, E., et al. (2017). Additive manufacturing scenarios for distributed production of spare parts. International Journal of Advanced Manufacturing Technology, 93, 869–880.CrossRef Durão, L. F. C. S., Christ, A., Zancul, E., et al. (2017). Additive manufacturing scenarios for distributed production of spare parts. International Journal of Advanced Manufacturing Technology, 93, 869–880.CrossRef
4.
Zurück zum Zitat Khajavi, S. H., Partanen, J., & Holmström, J. (2014). Additive manufacturing in the spare parts supply chain. Computers in Industry, 65(1), 50–63.CrossRef Khajavi, S. H., Partanen, J., & Holmström, J. (2014). Additive manufacturing in the spare parts supply chain. Computers in Industry, 65(1), 50–63.CrossRef
5.
Zurück zum Zitat Culmone, C., Smit, G., & Breedveld, P. (2019). Additive manufacturing of medical instruments: A state-of-the-art review. Additive Manufacturing, 27, 461–473.CrossRef Culmone, C., Smit, G., & Breedveld, P. (2019). Additive manufacturing of medical instruments: A state-of-the-art review. Additive Manufacturing, 27, 461–473.CrossRef
6.
Zurück zum Zitat Petersen, E. E., Kidd, R. W., & Pearce, J. M. (2017). Impact of DIY home manufacturing with 3D printing on the toy and game market. Technology, 5(3), 45. Petersen, E. E., Kidd, R. W., & Pearce, J. M. (2017). Impact of DIY home manufacturing with 3D printing on the toy and game market. Technology, 5(3), 45.
7.
Zurück zum Zitat Colorado, H. A., Mendoza, D. E., & Valencia, F. L. (2021). A combined strategy of additive manufacturing to support multidisciplinary education in arts, biology, and engineering. Journal of Science Education and Technology, 30, 58–73.CrossRef Colorado, H. A., Mendoza, D. E., & Valencia, F. L. (2021). A combined strategy of additive manufacturing to support multidisciplinary education in arts, biology, and engineering. Journal of Science Education and Technology, 30, 58–73.CrossRef
8.
Zurück zum Zitat Huang, Y., Leu, M. C., Majumder, J., & Donmez, A. (2015). Additive manufacturing: Current state, future potential, gaps and needs, and recommendations. Journal of Manufacturing Science and Engineering, 137(1), 014001.CrossRef Huang, Y., Leu, M. C., Majumder, J., & Donmez, A. (2015). Additive manufacturing: Current state, future potential, gaps and needs, and recommendations. Journal of Manufacturing Science and Engineering, 137(1), 014001.CrossRef
9.
Zurück zum Zitat Prabhu, R., Miller, SR., Simpson, TW., & Meisel, NA. (2018). Teaching design freedom: Exploring the effects of design for additive manufacturing education on the cognitive components of students’ creativity. In Proceedings of ASME 2018 International Conference, Quebec, Canada, August 26–29. Prabhu, R., Miller, SR., Simpson, TW., & Meisel, NA. (2018). Teaching design freedom: Exploring the effects of design for additive manufacturing education on the cognitive components of students’ creativity. In Proceedings of ASME 2018 International Conference, Quebec, Canada, August 26–29.
10.
Zurück zum Zitat Calhoun, S. J., & Harvey, P. S., Jr. (2018). Enhancing the teaching of seismic isolation using additive manufacturing. Engineering Structures, 167, 494–503.CrossRef Calhoun, S. J., & Harvey, P. S., Jr. (2018). Enhancing the teaching of seismic isolation using additive manufacturing. Engineering Structures, 167, 494–503.CrossRef
11.
Zurück zum Zitat Anastasiadou, C., & Vettese, S. (2021). Souvenir authenticity in the additive manufacturing age. Annals of Tourism Research, 89, 103188.CrossRef Anastasiadou, C., & Vettese, S. (2021). Souvenir authenticity in the additive manufacturing age. Annals of Tourism Research, 89, 103188.CrossRef
12.
Zurück zum Zitat Thurn, L. K., Balc, N., Gebhardt, A., & Kessler, J. (2017). Education packed in technology to promote innovations: Teaching based on additive manufacturing on a rolling lab. MATEC Web Conference, 137, 02013.CrossRef Thurn, L. K., Balc, N., Gebhardt, A., & Kessler, J. (2017). Education packed in technology to promote innovations: Teaching based on additive manufacturing on a rolling lab. MATEC Web Conference, 137, 02013.CrossRef
13.
Zurück zum Zitat Lim, S., Buswell, R. A., Le, T. T., et al. (2012). Developments in construction-scale additive manufacturing processes. Automation in Construction, 21, 262–268.CrossRef Lim, S., Buswell, R. A., Le, T. T., et al. (2012). Developments in construction-scale additive manufacturing processes. Automation in Construction, 21, 262–268.CrossRef
14.
Zurück zum Zitat Ferreira, T., Almeida, HA., Bártolo, PJ., & Campbell, I. (2012). Additive manufacturing in jewellery design. In Proceedings of the ASME 2012 11th Biennial Conf Nantes, France, pp. 187–194. Ferreira, T., Almeida, HA., Bártolo, PJ., & Campbell, I. (2012). Additive manufacturing in jewellery design. In Proceedings of the ASME 2012 11th Biennial Conf Nantes, France, pp. 187–194.
15.
Zurück zum Zitat Lipton, J. I., Cutler, M., Nigl, F., et al. (2015). Additive manufacturing for the food industry. Trends in Food Science and Technology, 43(1), 114–123.CrossRef Lipton, J. I., Cutler, M., Nigl, F., et al. (2015). Additive manufacturing for the food industry. Trends in Food Science and Technology, 43(1), 114–123.CrossRef
16.
Zurück zum Zitat Labeaga-Martínez, N., Sanjurjo-Rivo, M., Díaz-Álvarez, J., & Martínez-Frías, J. (2017). Additive manufacturing for a moon village. Procedia Manufacturing, 13, 794–801.CrossRef Labeaga-Martínez, N., Sanjurjo-Rivo, M., Díaz-Álvarez, J., & Martínez-Frías, J. (2017). Additive manufacturing for a moon village. Procedia Manufacturing, 13, 794–801.CrossRef
17.
Zurück zum Zitat Snyder, MP., Dunn, JJ., & Gonzalez, EJ. (2013). Effects of microgravity on extrusion based additive manufacturing. In Space Exploration Conference, Sep 10–12, San Diego, CA. Snyder, MP., Dunn, JJ., & Gonzalez, EJ. (2013). Effects of microgravity on extrusion based additive manufacturing. In Space Exploration Conference, Sep 10–12, San Diego, CA.
18.
Zurück zum Zitat Boer, J., Lambrechts, W., & Krikke, H. (2020). Additive manufacturing in military and humanitarian missions: Advantages and challenges in the spare parts supply chain. Journal of Cleaner Production, 257, 120301.CrossRef Boer, J., Lambrechts, W., & Krikke, H. (2020). Additive manufacturing in military and humanitarian missions: Advantages and challenges in the spare parts supply chain. Journal of Cleaner Production, 257, 120301.CrossRef
19.
Zurück zum Zitat Wilson, J. M., Piya, C., Shin, Y. C., et al. (2014). Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. Journal of Cleaner Production, 80, 170–178.CrossRef Wilson, J. M., Piya, C., Shin, Y. C., et al. (2014). Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. Journal of Cleaner Production, 80, 170–178.CrossRef
20.
Zurück zum Zitat Petrat, T., Graf, B., Gumenyuk, A., & Rethmeier, M. (2016). Laser metal deposition as repair Technology for a gas turbine burner made of inconel 718. Physics Procedia, 83, 761–768.CrossRef Petrat, T., Graf, B., Gumenyuk, A., & Rethmeier, M. (2016). Laser metal deposition as repair Technology for a gas turbine burner made of inconel 718. Physics Procedia, 83, 761–768.CrossRef
21.
Zurück zum Zitat Li, L., Li, C., Tang, Y., & Du, Y. (2017). An integrated approach of reverse engineering aided remanufacturing process for worn components. Robotics and Computer-Integrated Manufacturing, 48, 39–50.CrossRef Li, L., Li, C., Tang, Y., & Du, Y. (2017). An integrated approach of reverse engineering aided remanufacturing process for worn components. Robotics and Computer-Integrated Manufacturing, 48, 39–50.CrossRef
22.
Zurück zum Zitat Chandra, S., Tan, X., Wang, C. et al. (2018). Additive manufacturing of a single crystal nickel-based superalloy using selective electron beam melting. In Proceedings 3rd International Conference Progress Addit Manuf (Pro-AM) (pp. 427–432). Chandra, S., Tan, X., Wang, C. et al. (2018). Additive manufacturing of a single crystal nickel-based superalloy using selective electron beam melting. In Proceedings 3rd International Conference Progress Addit Manuf (Pro-AM) (pp. 427–432).
23.
Zurück zum Zitat Basak, A., Acharya, R., & Das, S. (2016). Additive manufacturing of single-crystal Superalloy CMSX-4 through scanning laser epitaxy: Computational modeling, experimental process development, and process parameter optimization. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 47, 3845–3859.CrossRef Basak, A., Acharya, R., & Das, S. (2016). Additive manufacturing of single-crystal Superalloy CMSX-4 through scanning laser epitaxy: Computational modeling, experimental process development, and process parameter optimization. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 47, 3845–3859.CrossRef
24.
Zurück zum Zitat Shinde, M. S., & Ashtankar, K. M. (2017). Additive manufacturing-assisted conformal cooling channels in mold manufacturing processes. Advances in Mechanical Engineering, 9, 5.CrossRef Shinde, M. S., & Ashtankar, K. M. (2017). Additive manufacturing-assisted conformal cooling channels in mold manufacturing processes. Advances in Mechanical Engineering, 9, 5.CrossRef
25.
Zurück zum Zitat Diegel, O., Schutte, J., Ferreira, A., & Chan, Y. L. (2020). Design for additive manufacturing process for a lightweight hydraulic manifold. Additive Manufacturing, 36, 101446.CrossRef Diegel, O., Schutte, J., Ferreira, A., & Chan, Y. L. (2020). Design for additive manufacturing process for a lightweight hydraulic manifold. Additive Manufacturing, 36, 101446.CrossRef
26.
Zurück zum Zitat Feng, S., Kamat, A. M., & Pei, Y. (2021). Design and fabrication of conformal cooling channels in molds: Review and progress updates. International Journal of Heat and Mass Transfer, 171, 121082.CrossRef Feng, S., Kamat, A. M., & Pei, Y. (2021). Design and fabrication of conformal cooling channels in molds: Review and progress updates. International Journal of Heat and Mass Transfer, 171, 121082.CrossRef
27.
Zurück zum Zitat Kuo, C. C., Jiang, Z. F., & Lee, J. H. (2019). Effects of cooling time of molded parts on rapid injection molds with different layouts and surface roughness of conformal cooling channels. International Journal of Advanced Manufacturing Technology, 103, 2169–2182.CrossRef Kuo, C. C., Jiang, Z. F., & Lee, J. H. (2019). Effects of cooling time of molded parts on rapid injection molds with different layouts and surface roughness of conformal cooling channels. International Journal of Advanced Manufacturing Technology, 103, 2169–2182.CrossRef
28.
Zurück zum Zitat Scudino, S., Unterdörfer, C., Prashanth, K. G., et al. (2015). Additive manufacturing of Cu–10Sn bronze. Materials Letters, 156, 202–204.CrossRef Scudino, S., Unterdörfer, C., Prashanth, K. G., et al. (2015). Additive manufacturing of Cu–10Sn bronze. Materials Letters, 156, 202–204.CrossRef
29.
Zurück zum Zitat Brøtan, V., Berg, O. A., & Sørby, K. (2016). Additive manufacturing for enhanced performance of molds. Procedia CIRP, 54, 186–190.CrossRef Brøtan, V., Berg, O. A., & Sørby, K. (2016). Additive manufacturing for enhanced performance of molds. Procedia CIRP, 54, 186–190.CrossRef
30.
Zurück zum Zitat Mitra, S., Castro, A. R. D., & El Mansori, M. (2019). On the rapid manufacturing process of functional 3D printed sand molds. Journal of Manufacturing Processes, 42, 202–212.CrossRef Mitra, S., Castro, A. R. D., & El Mansori, M. (2019). On the rapid manufacturing process of functional 3D printed sand molds. Journal of Manufacturing Processes, 42, 202–212.CrossRef
31.
Zurück zum Zitat Hawaldar, N., & Zhang, J. (2018). A comparative study of fabrication of sand casting mold using additive manufacturing and conventional process. International Journal of Advanced Manufacturing Technology, 97, 1037–1045.CrossRef Hawaldar, N., & Zhang, J. (2018). A comparative study of fabrication of sand casting mold using additive manufacturing and conventional process. International Journal of Advanced Manufacturing Technology, 97, 1037–1045.CrossRef
32.
Zurück zum Zitat Druschitz, A., Williams, C., Snelling, D., & Seals, M. (2014). Additive manufacturing supports the production of complex castings. In M. Tiryakioğlu, J. Campbell, & G. Byczynski (Eds.), Shape casting: 5th Int Sym (pp. 51–57). Cham: Springer. Druschitz, A., Williams, C., Snelling, D., & Seals, M. (2014). Additive manufacturing supports the production of complex castings. In M. Tiryakioğlu, J. Campbell, & G. Byczynski (Eds.), Shape casting: 5th Int Sym (pp. 51–57). Cham: Springer.
33.
Zurück zum Zitat Carneiro, V. H., Rawson, S. D., Puga, H., et al. (2020). Additive manufacturing assisted investment casting: A low-cost method to fabricate periodic metallic cellular lattices. Additive Manufacturing, 33, 101085.CrossRef Carneiro, V. H., Rawson, S. D., Puga, H., et al. (2020). Additive manufacturing assisted investment casting: A low-cost method to fabricate periodic metallic cellular lattices. Additive Manufacturing, 33, 101085.CrossRef
34.
Zurück zum Zitat Kruzhanov, V., & Arnhold, V. (2012). Energy consumption in powder metallurgical manufacturing. Powder Metallurgy, 55(1), 14–21.CrossRef Kruzhanov, V., & Arnhold, V. (2012). Energy consumption in powder metallurgical manufacturing. Powder Metallurgy, 55(1), 14–21.CrossRef
35.
Zurück zum Zitat Cordova, L., Campos, M., & Tinga, T. (2019). Revealing the effects of powder reuse for selective laser melting by powder characterization. JOM, 71, 1062–1072.CrossRef Cordova, L., Campos, M., & Tinga, T. (2019). Revealing the effects of powder reuse for selective laser melting by powder characterization. JOM, 71, 1062–1072.CrossRef
36.
Zurück zum Zitat Hettesheimer, T., Hirzel, S., & Roß, H. B. (2018). Energy savings through additive manufacturing: An analysis of selective laser sintering for automotive and aircraft components. Energy Efficiency, 11, 1227–1245.CrossRef Hettesheimer, T., Hirzel, S., & Roß, H. B. (2018). Energy savings through additive manufacturing: An analysis of selective laser sintering for automotive and aircraft components. Energy Efficiency, 11, 1227–1245.CrossRef
37.
Zurück zum Zitat Hassen, A. A., Noakes, M., Nandwana, P., et al. (2020). Scaling up metal additive manufacturing process to fabricate molds for composite manufacturing. Additive Manufacturing, 32, 101093.CrossRef Hassen, A. A., Noakes, M., Nandwana, P., et al. (2020). Scaling up metal additive manufacturing process to fabricate molds for composite manufacturing. Additive Manufacturing, 32, 101093.CrossRef
Metadaten
Titel
Application
verfasst von
Sanjay Kumar
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-80783-2_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.