Skip to main content

2019 | OriginalPaper | Buchkapitel

10. Applications and Cost-Benefit Data

verfasst von : Boris Ildusovich Kharisov, Oxana Vasilievna Kharissova

Erschienen in: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

According to the statistic reports, graphite prices were up 30–40% in the second half of 2017 due to an improving steel industry, environmental related production problems in China, and continued strong demand growth from the lithium-ion battery industry. Prices for large flake graphite are currently up to $1200/t from US$750 in 2017. This is still well below the 2012 peak of US$2800/t which was entirely due to the commodity super cycle and strong steel demand. With steel demand also recovering and production issues in China, the supply/demand picture for graphite is very favorable [1]. Graphite prices depend on two factors – flake size and purity. Large flake (+80 mesh) and high-carbon (+94%) varieties command the premium pricing segment [2]. Graphite is applied in the following products and processes, among others:

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat E.I. Zhmurikov, I.A. Bubnenkov, V.V. Dremov, S.I. Samarin, A.S. Pokrovsky, D.V. Harkov, Graphite in science and nuclear technique. (2013). arXiv:1307.1869 [cond-mat.mtrl-sci] E.I. Zhmurikov, I.A. Bubnenkov, V.V. Dremov, S.I. Samarin, A.S. Pokrovsky, D.V. Harkov, Graphite in science and nuclear technique. (2013). arXiv:1307.1869 [cond-mat.mtrl-sci]
5.
Zurück zum Zitat S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)CrossRef S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)CrossRef
6.
Zurück zum Zitat W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009)CrossRef W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009)CrossRef
7.
Zurück zum Zitat S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, M. Setkiewicz, Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16(1), 103 (2016)CrossRef S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, M. Setkiewicz, Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16(1), 103 (2016)CrossRef
8.
Zurück zum Zitat A.G. Bannov, J. Prášek, O. Jašek, L. Zajíˇcková, Investigation of pristine graphite oxide as room-temperature chemiresistive ammonia gas sensing material. Sensors 17, 320 (2017)CrossRef A.G. Bannov, J. Prášek, O. Jašek, L. Zajíˇcková, Investigation of pristine graphite oxide as room-temperature chemiresistive ammonia gas sensing material. Sensors 17, 320 (2017)CrossRef
9.
Zurück zum Zitat O.A. Al-Hartomy, F. Al-Solamy, A. Al-Ghamdi, et al., Influence of carbon black structure and specific surface area on the mechanical and dielectric properties of filled rubber composites. Int. J. Polym. Sci. 2011., Article ID 521985, 8 pp (2011) O.A. Al-Hartomy, F. Al-Solamy, A. Al-Ghamdi, et al., Influence of carbon black structure and specific surface area on the mechanical and dielectric properties of filled rubber composites. Int. J. Polym. Sci. 2011., Article ID 521985, 8 pp (2011)
11.
Zurück zum Zitat G. Datt, C. Kotabage, A.C. Abhyankar, Ferromagnetic resonance of NiCoFe2O4 nanoparticles and microwave absorption properties of flexible NiCoFe2O4–carbon black/poly(vinyl alcohol) composites. Phys. Chem. Chem. Phys. 19, 20699–20712 (2017)CrossRef G. Datt, C. Kotabage, A.C. Abhyankar, Ferromagnetic resonance of NiCoFe2O4 nanoparticles and microwave absorption properties of flexible NiCoFe2O4–carbon black/poly(vinyl alcohol) composites. Phys. Chem. Chem. Phys. 19, 20699–20712 (2017)CrossRef
13.
Zurück zum Zitat C. Canales, L. Gidi, G. Ramírez, Electrochemical activity of modified glassy carbon electrodes with covalent bonds towards molecular oxygen reduction. Int. J. Electrochem. Sci. 10, 1684–1695 (2015) C. Canales, L. Gidi, G. Ramírez, Electrochemical activity of modified glassy carbon electrodes with covalent bonds towards molecular oxygen reduction. Int. J. Electrochem. Sci. 10, 1684–1695 (2015)
14.
Zurück zum Zitat J. Miliki, N. Markicevi, A. Jovic, R. Hercigonja, B. Šljuki, Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion? Process. Appl. Ceram. 10(2), 87–95 (2016)CrossRef J. Miliki, N. Markicevi, A. Jovic, R. Hercigonja, B. Šljuki, Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion? Process. Appl. Ceram. 10(2), 87–95 (2016)CrossRef
15.
Zurück zum Zitat Y.E. Seidel, R.W. Lindström, Z. Jusys, et al., Stability of nanostructured Pt/glassy carbon electrodes prepared by colloidal lithography. J. Electrochem. Soc. 155(3), K50–K58 (2008)CrossRef Y.E. Seidel, R.W. Lindström, Z. Jusys, et al., Stability of nanostructured Pt/glassy carbon electrodes prepared by colloidal lithography. J. Electrochem. Soc. 155(3), K50–K58 (2008)CrossRef
16.
Zurück zum Zitat Y. Jalit, M.C. Rodríguez, M.D. Rubianes, S. Bollo, G.A. Rivas, Glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polylysine. Electroanalysis 20(15), 1623–1631 (2008)CrossRef Y. Jalit, M.C. Rodríguez, M.D. Rubianes, S. Bollo, G.A. Rivas, Glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polylysine. Electroanalysis 20(15), 1623–1631 (2008)CrossRef
17.
Zurück zum Zitat S.E. Subramani, T.V. Vineesh, T. Priya, V. Kathikeyan, N. Thinakaran, Electrochemical detection of Pb(II) ions using glassy carbon electrode surface modified by functionalized mesoporous carbon. Sens. Lett. 15(4), 320–327 (2017)CrossRef S.E. Subramani, T.V. Vineesh, T. Priya, V. Kathikeyan, N. Thinakaran, Electrochemical detection of Pb(II) ions using glassy carbon electrode surface modified by functionalized mesoporous carbon. Sens. Lett. 15(4), 320–327 (2017)CrossRef
18.
Zurück zum Zitat C. Sun, L. Rotundo, C. Garino, Electrochemical CO2 reduction at glassy carbon electrodes functionalized by MnI and ReI organometallic complexes. Chem. Phys. Chem. 18(22), 3219–3229 (2017)CrossRef C. Sun, L. Rotundo, C. Garino, Electrochemical CO2 reduction at glassy carbon electrodes functionalized by MnI and ReI organometallic complexes. Chem. Phys. Chem. 18(22), 3219–3229 (2017)CrossRef
19.
Zurück zum Zitat A. Braun, J. Ilavsky, S. Seifert, Highly porous activated glassy carbon film sandwich structure for electrochemical energy storage in ultracapacitor applications: study of the porous film structure and gradient. J. Mater. Res. 25(8), 1532–1540 (2010)CrossRef A. Braun, J. Ilavsky, S. Seifert, Highly porous activated glassy carbon film sandwich structure for electrochemical energy storage in ultracapacitor applications: study of the porous film structure and gradient. J. Mater. Res. 25(8), 1532–1540 (2010)CrossRef
20.
Zurück zum Zitat V.D. Chekanova, A.S. Fialkov, Vitreous carbon (preparation, properties, and applications). Russ. Chem. Rev. 1971(40), 413–428 (1971)CrossRef V.D. Chekanova, A.S. Fialkov, Vitreous carbon (preparation, properties, and applications). Russ. Chem. Rev. 1971(40), 413–428 (1971)CrossRef
21.
Zurück zum Zitat C. Garion, Mechanical properties for reliability analysis of structures in glassy carbon. World J. Mech. 4, 79–89 (2014)CrossRef C. Garion, Mechanical properties for reliability analysis of structures in glassy carbon. World J. Mech. 4, 79–89 (2014)CrossRef
22.
Zurück zum Zitat N. Komarevskiy, V. Shklover, L. Braginsky, C. Hafner, J. Lawson, Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry. Opt. Express 20(13), 14189–14200 (2012)CrossRef N. Komarevskiy, V. Shklover, L. Braginsky, C. Hafner, J. Lawson, Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry. Opt. Express 20(13), 14189–14200 (2012)CrossRef
23.
Zurück zum Zitat J. Myalski, B. Hekner, A. Posmyk. The influence of glassy carbon on tribological properties in metal – ceramic composites with skeleton reinforcement. Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), 2015, Vol. 2015, No. CICMT, 000121–000124 (2015)CrossRef J. Myalski, B. Hekner, A. Posmyk. The influence of glassy carbon on tribological properties in metal – ceramic composites with skeleton reinforcement. Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), 2015, Vol. 2015, No. CICMT, 000121–000124 (2015)CrossRef
24.
Zurück zum Zitat Y. Koval, A. Geworski, K. Gieb, I. Lazareva, P. Müller, Fabrication and characterization of glassy carbon membranes. J. Vac. Sci. Technol. B: Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom. 32, 042001 (2014) Y. Koval, A. Geworski, K. Gieb, I. Lazareva, P. Müller, Fabrication and characterization of glassy carbon membranes. J. Vac. Sci. Technol. B: Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom. 32, 042001 (2014)
25.
Zurück zum Zitat M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, D. Ricci, Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity. Sci. Rep. 7, 40332 (2017)CrossRef M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, D. Ricci, Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity. Sci. Rep. 7, 40332 (2017)CrossRef
28.
Zurück zum Zitat Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4(2), 207–218 (2009)CrossRef Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4(2), 207–218 (2009)CrossRef
29.
Zurück zum Zitat V. Vaijayanthimala, H.-C. Chang, Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4(1), 47–55 (2009)CrossRef V. Vaijayanthimala, H.-C. Chang, Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4(1), 47–55 (2009)CrossRef
30.
Zurück zum Zitat S.H. Lee, Gas sensor using nanodiamond and gas detection method. 2009, 6 pp. KR 2009066740 A 20090624 Patent written in Korean. Application: KR 2007–134421 20071220. Priority: CAN 151:92754 AN 2009:780521 S.H. Lee, Gas sensor using nanodiamond and gas detection method. 2009, 6 pp. KR 2009066740 A 20090624 Patent written in Korean. Application: KR 2007–134421 20071220. Priority: CAN 151:92754 AN 2009:780521
31.
Zurück zum Zitat S. Raina, W.P. Kang, J.L. Davidson, Optimizing nitrogen incorporation in nanodiamond film for bio-analyte sensing. Diam. Relat. Mater. 18(5–8), 718–721 (2009)CrossRef S. Raina, W.P. Kang, J.L. Davidson, Optimizing nitrogen incorporation in nanodiamond film for bio-analyte sensing. Diam. Relat. Mater. 18(5–8), 718–721 (2009)CrossRef
32.
Zurück zum Zitat P.A. Vityaz, The state of the art and prospects of detonation-synthesis nanodiamond applications in Belarus. Phys. Solid State 46(4), 606–610 (2004)CrossRef P.A. Vityaz, The state of the art and prospects of detonation-synthesis nanodiamond applications in Belarus. Phys. Solid State 46(4), 606–610 (2004)CrossRef
33.
Zurück zum Zitat S. Shiozaki, Normal-temperature glass, its formation, and normal temperature glass coating material. 2009, 18 pp. JP 2009102188 A 20090514 Patent written in Japanese. Application: JP 2007–274359 20071022. Priority: CAN 150:499296 AN 2009:583008 S. Shiozaki, Normal-temperature glass, its formation, and normal temperature glass coating material. 2009, 18 pp. JP 2009102188 A 20090514 Patent written in Japanese. Application: JP 2007–274359 20071022. Priority: CAN 150:499296 AN 2009:583008
34.
Zurück zum Zitat V.S. Bondar, A.P. Puzyr, Possibilities and prospects for creation of new nanoprocesses based on detonation nanodiamond particles: medicobiological and technical aspects. Konstruktsii iz Kompozitsionnykh Materialov 4, 80–94 (2005) V.S. Bondar, A.P. Puzyr, Possibilities and prospects for creation of new nanoprocesses based on detonation nanodiamond particles: medicobiological and technical aspects. Konstruktsii iz Kompozitsionnykh Materialov 4, 80–94 (2005)
35.
Zurück zum Zitat S.A. Zibrov, V.V. Vasil'ev, V.L. Velichanskii, V.G. Pevgov, V.M. Rudoi, Method for protection of documents, valuable papers or products with nanodiamonds with active NV centers. 2009, 4 pp. RU 2357866 C1 20090610 Patent written in Russian. Application: RU 2008–136466 20080910. Priority: CAN 151:7812 AN 2009:703362 S.A. Zibrov, V.V. Vasil'ev, V.L. Velichanskii, V.G. Pevgov, V.M. Rudoi, Method for protection of documents, valuable papers or products with nanodiamonds with active NV centers. 2009, 4 pp. RU 2357866 C1 20090610 Patent written in Russian. Application: RU 2008–136466 20080910. Priority: CAN 151:7812 AN 2009:703362
36.
Zurück zum Zitat D. Zhang, X.-G. Hu, Y. Tong, F.-L. Huang, The research development of nanodiamond as a lubricating additive. Runhuayou 21(1), 50–54 (2006) D. Zhang, X.-G. Hu, Y. Tong, F.-L. Huang, The research development of nanodiamond as a lubricating additive. Runhuayou 21(1), 50–54 (2006)
37.
Zurück zum Zitat J. Luo, X. Liu, X. Wang, Effect of proportion of nano-diamond and zirconia on color of core resin. Xiandai Kouqiang Yixue Zazhi 22(3), 251–254 (2008) J. Luo, X. Liu, X. Wang, Effect of proportion of nano-diamond and zirconia on color of core resin. Xiandai Kouqiang Yixue Zazhi 22(3), 251–254 (2008)
38.
Zurück zum Zitat M. Comet, V. Pichot, B. Siegert, D. Spitzer, J.-P. Moeglin, Y. Boehrer, Use of nanodiamonds as a reducing agent in a chlorate-based energetic composition. Propellants Explos. Pyrotech. 34(2), 166–173 (2009)CrossRef M. Comet, V. Pichot, B. Siegert, D. Spitzer, J.-P. Moeglin, Y. Boehrer, Use of nanodiamonds as a reducing agent in a chlorate-based energetic composition. Propellants Explos. Pyrotech. 34(2), 166–173 (2009)CrossRef
39.
Zurück zum Zitat A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009)CrossRef A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009)CrossRef
40.
Zurück zum Zitat O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, H. Girard, C. Gesset, M. Senour, A. Thorel, J.-C. Arnault, J.-P. Boudou, P.A. Curmi, and F. Treussart, Determination of the internalization pathway of photoluminescent nanodiamonds in mammalian cells for biological labeling and optimization of the fluorescent yield. arXiv.org, e-Print Archive, Physics, 2009, 1–24, arXiv:0907.1148v1 [physics.optics] O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, H. Girard, C. Gesset, M. Senour, A. Thorel, J.-C. Arnault, J.-P. Boudou, P.A. Curmi, and F. Treussart, Determination of the internalization pathway of photoluminescent nanodiamonds in mammalian cells for biological labeling and optimization of the fluorescent yield. arXiv.​org, e-Print Archive, Physics, 2009, 1–24, arXiv:0907.1148v1 [physics.optics]
43.
Zurück zum Zitat P.R. Unwin, A.G. Güell, G. Zhang, Nanoscale electrochemistry of sp(2) carbon materials: from graphite and graphene to carbon nanotubes. Acc. Chem. Res. 49(9), 2041–2048 (2016)CrossRef P.R. Unwin, A.G. Güell, G. Zhang, Nanoscale electrochemistry of sp(2) carbon materials: from graphite and graphene to carbon nanotubes. Acc. Chem. Res. 49(9), 2041–2048 (2016)CrossRef
44.
Zurück zum Zitat N.A. Koratkar, Graphene in composite materials: synthesis, characterization and applications (DEStech Publications, Inc., Lancaster, 2013), p. 198 N.A. Koratkar, Graphene in composite materials: synthesis, characterization and applications (DEStech Publications, Inc., Lancaster, 2013), p. 198
45.
Zurück zum Zitat S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef
46.
Zurück zum Zitat X. Gong, G. Liu, Y. Li, et al., Functionalized-graphene composites: fabrication and applications in sustainable energy and environment. Chem. Mater. 28(22), 8082–8118 (2016)CrossRef X. Gong, G. Liu, Y. Li, et al., Functionalized-graphene composites: fabrication and applications in sustainable energy and environment. Chem. Mater. 28(22), 8082–8118 (2016)CrossRef
47.
Zurück zum Zitat H. Zhang, Y. Yuan, Y. Sun, et al., An ionic liquid-magnetic graphene composite for magnet dispersive solid-phase extraction of triazine herbicides in surface water followed by high performance liquid chromatography. Analyst 143, 175–181 (2018)CrossRef H. Zhang, Y. Yuan, Y. Sun, et al., An ionic liquid-magnetic graphene composite for magnet dispersive solid-phase extraction of triazine herbicides in surface water followed by high performance liquid chromatography. Analyst 143, 175–181 (2018)CrossRef
48.
Zurück zum Zitat B.C. Marin, J. Liu, E. Aklile, et al., SERS-enhanced piezoplasmonic graphene composite for biological and structural strain mapping. Nanoscale 9, 1292–1298 (2017)CrossRef B.C. Marin, J. Liu, E. Aklile, et al., SERS-enhanced piezoplasmonic graphene composite for biological and structural strain mapping. Nanoscale 9, 1292–1298 (2017)CrossRef
49.
Zurück zum Zitat D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.B.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007)CrossRef D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.B.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007)CrossRef
50.
Zurück zum Zitat Y. Huang, M. Zhu, W. Meng, et al., Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv. 5, 33981–33989 (2015)CrossRef Y. Huang, M. Zhu, W. Meng, et al., Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv. 5, 33981–33989 (2015)CrossRef
51.
Zurück zum Zitat J. Gao, C. Liu, L. Miao, X. Wang, Y. Chen, Free-standing reduced graphene oxide paper with high electrical conductivity. J. Electron. Mater. 45(3), 1290–1295 (2016)CrossRef J. Gao, C. Liu, L. Miao, X. Wang, Y. Chen, Free-standing reduced graphene oxide paper with high electrical conductivity. J. Electron. Mater. 45(3), 1290–1295 (2016)CrossRef
52.
Zurück zum Zitat K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
53.
Zurück zum Zitat D.A. Areshkin, C.T. White, Building blocks for integrated graphene circuits. Nano Lett. 7(11), 3253–3259 (2007)CrossRef D.A. Areshkin, C.T. White, Building blocks for integrated graphene circuits. Nano Lett. 7(11), 3253–3259 (2007)CrossRef
54.
Zurück zum Zitat H. Raza (ed.), Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications (Springer, New York, 2012), pp. 586 H. Raza (ed.), Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications (Springer, New York, 2012), pp. 586
55.
Zurück zum Zitat X. Liang, Z. Fu, S.Y. Chou, D.A. Areshkin, C.T. White, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7(12), 3840–3844 (2007)CrossRef X. Liang, Z. Fu, S.Y. Chou, D.A. Areshkin, C.T. White, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7(12), 3840–3844 (2007)CrossRef
56.
Zurück zum Zitat Y.G. Semenov, K.W. Kim, J.M. Zavada, Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 91, 153105 (2007)CrossRef Y.G. Semenov, K.W. Kim, J.M. Zavada, Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 91, 153105 (2007)CrossRef
57.
Zurück zum Zitat Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Physica E 40(2), 228–232 (2007)CrossRef Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Physica E 40(2), 228–232 (2007)CrossRef
58.
Zurück zum Zitat R.C. Ordonez, C.K. Hayashi, C.M. Torres, et al., Rapid fabrication of graphene field-effect transistors with liquid-metal interconnects and electrolytic gate dielectric made of honey. Sci. Rep. 7, 10171 (2017)CrossRef R.C. Ordonez, C.K. Hayashi, C.M. Torres, et al., Rapid fabrication of graphene field-effect transistors with liquid-metal interconnects and electrolytic gate dielectric made of honey. Sci. Rep. 7, 10171 (2017)CrossRef
59.
Zurück zum Zitat P. Aydogan, O. Balci, C. Kocabas, S. Suzer, et al., Monitoring the operation of a graphene transistor in an integrated circuit by XPS. Org. Electron. 37, 178–182 (2016)CrossRef P. Aydogan, O. Balci, C. Kocabas, S. Suzer, et al., Monitoring the operation of a graphene transistor in an integrated circuit by XPS. Org. Electron. 37, 178–182 (2016)CrossRef
60.
Zurück zum Zitat T. Jayasekera, J.W. Mintmire, Transport in multiterminal graphene nanodevices. Nanotechnology 18(42), 424033 (2007)CrossRef T. Jayasekera, J.W. Mintmire, Transport in multiterminal graphene nanodevices. Nanotechnology 18(42), 424033 (2007)CrossRef
61.
Zurück zum Zitat N. Staley, H. Wang, C. Puls, J. Forster, T.N. Jackson, K. McCarthy, B. Clouser, Y. Liu, Lithography-free fabrication of graphene devices. Appl. Phys. Lett. 90, 143518 (2007)CrossRef N. Staley, H. Wang, C. Puls, J. Forster, T.N. Jackson, K. McCarthy, B. Clouser, Y. Liu, Lithography-free fabrication of graphene devices. Appl. Phys. Lett. 90, 143518 (2007)CrossRef
62.
Zurück zum Zitat S.J. Heerema, C. Dekker, Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016)CrossRef S.J. Heerema, C. Dekker, Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016)CrossRef
63.
Zurück zum Zitat M. Balcioglu, B. Zafer Buyukbekar, M. Selman Yavuz, M.V. Yigit, Smart-polymer-functionalized graphene nanodevices for thermo-switch-controlled biodetection. ACS Biomater Sci. Eng. 1(1), 27–36 (2015)CrossRef M. Balcioglu, B. Zafer Buyukbekar, M. Selman Yavuz, M.V. Yigit, Smart-polymer-functionalized graphene nanodevices for thermo-switch-controlled biodetection. ACS Biomater Sci. Eng. 1(1), 27–36 (2015)CrossRef
64.
Zurück zum Zitat X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRef X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRef
65.
Zurück zum Zitat M.F. Bhopal, D.W. Lee, A. ur Rehman, S.H. Lee, Past and future of graphene/silicon heterojunction solar cells: a review. J. Mater. Chem. C 5, 10701–10714 (2017)CrossRef M.F. Bhopal, D.W. Lee, A. ur Rehman, S.H. Lee, Past and future of graphene/silicon heterojunction solar cells: a review. J. Mater. Chem. C 5, 10701–10714 (2017)CrossRef
66.
Zurück zum Zitat J. Yoon, H. Sung, G. Lee, W. Cho, et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10, 337–345 (2017)CrossRef J. Yoon, H. Sung, G. Lee, W. Cho, et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10, 337–345 (2017)CrossRef
67.
Zurück zum Zitat N. Park, S. Hong, G. Kim, S.-H. Jhi, Computational study of hydrogen storage characteristics of covalent-bonded graphenes. J. Am. Chem. Soc. 129(29), 8999–9003 (2007)CrossRef N. Park, S. Hong, G. Kim, S.-H. Jhi, Computational study of hydrogen storage characteristics of covalent-bonded graphenes. J. Am. Chem. Soc. 129(29), 8999–9003 (2007)CrossRef
68.
Zurück zum Zitat C. Zhou, J.A. Szpunar, X. Cui, Synthesis of Ni/graphene nanocomposite for hydrogen storage. ACS Appl. Mater. Interfaces 8(24), 15232–15241 (2016)CrossRef C. Zhou, J.A. Szpunar, X. Cui, Synthesis of Ni/graphene nanocomposite for hydrogen storage. ACS Appl. Mater. Interfaces 8(24), 15232–15241 (2016)CrossRef
69.
Zurück zum Zitat H.G. Shiraz, O. Tavakoli, Investigation of graphene-based systems for hydrogen storage. Renew. Sust. Energ. Rev. 74, 104–109 (2017)CrossRef H.G. Shiraz, O. Tavakoli, Investigation of graphene-based systems for hydrogen storage. Renew. Sust. Energ. Rev. 74, 104–109 (2017)CrossRef
70.
Zurück zum Zitat F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007)CrossRef F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007)CrossRef
71.
Zurück zum Zitat C.I.L. Justino, A.R. Gomes, A.C. Freitas, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)CrossRef C.I.L. Justino, A.R. Gomes, A.C. Freitas, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)CrossRef
72.
Zurück zum Zitat S.S. Varghese, S. Lonkar, K.K. Singh, et al., Recent advances in graphene based gas sensors. Sensors Actuators B Chem. 218, 160–183 (2015)CrossRef S.S. Varghese, S. Lonkar, K.K. Singh, et al., Recent advances in graphene based gas sensors. Sensors Actuators B Chem. 218, 160–183 (2015)CrossRef
75.
Zurück zum Zitat J. Cai, W. Li, P. Zhao, J. Yu, Z. Yang, Low-cost and high-performance electrospun carbon nanofiber film anodes. Int. J. Electrochem. Sci. 13, 2934–2944 (2018)CrossRef J. Cai, W. Li, P. Zhao, J. Yu, Z. Yang, Low-cost and high-performance electrospun carbon nanofiber film anodes. Int. J. Electrochem. Sci. 13, 2934–2944 (2018)CrossRef
76.
Zurück zum Zitat B. Kumar, M. Asadi, D. Pisasale, et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013)CrossRef B. Kumar, M. Asadi, D. Pisasale, et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013)CrossRef
78.
Zurück zum Zitat M. Bierdel, S. Buchholz, V. Michele, L. Mleczko, R. Rudolf, M. Voetz, A. Wolf, Industrial production of multiwalled carbon nanotubes. Phys. Stat. Sol. 244, 3939–3943 (2007)CrossRef M. Bierdel, S. Buchholz, V. Michele, L. Mleczko, R. Rudolf, M. Voetz, A. Wolf, Industrial production of multiwalled carbon nanotubes. Phys. Stat. Sol. 244, 3939–3943 (2007)CrossRef
80.
Zurück zum Zitat I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: sensor properties. A review. Mod. Electron. Mater. 2(4), 95–105 (2016)CrossRef I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: sensor properties. A review. Mod. Electron. Mater. 2(4), 95–105 (2016)CrossRef
81.
Zurück zum Zitat O.V. Kharissova, L.M. Torres Martínez, B.I. Kharisov, in Advances in Carbon Nanostructures, ed. by A.M.T. Silva, S.A.C. Carabineiro. Recent Trends of Reinforcement of Cement with Carbon Nanotubes and Fibers, (INTECH, London, UK, 2016) O.V. Kharissova, L.M. Torres Martínez, B.I. Kharisov, in Advances in Carbon Nanostructures, ed. by A.M.T. Silva, S.A.C. Carabineiro. Recent Trends of Reinforcement of Cement with Carbon Nanotubes and Fibers, (INTECH, London, UK, 2016)
82.
Zurück zum Zitat M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRef M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRef
83.
Zurück zum Zitat M. Eguílaz, C.J. Venegas, A. Gutiérrez, Carbon nanotubes non-covalently functionalized with cytochrome c: a new bioanalytical platform for building bienzymatic biosensors. Microchem. J. 128, 161–165 (2016)CrossRef M. Eguílaz, C.J. Venegas, A. Gutiérrez, Carbon nanotubes non-covalently functionalized with cytochrome c: a new bioanalytical platform for building bienzymatic biosensors. Microchem. J. 128, 161–165 (2016)CrossRef
84.
Zurück zum Zitat S. Hou, A. Zhang, M. Su, Nanomaterials for biosensing applications. Nanomaterials 6, 58, 4 pp (2016)CrossRef S. Hou, A. Zhang, M. Su, Nanomaterials for biosensing applications. Nanomaterials 6, 58, 4 pp (2016)CrossRef
85.
Zurück zum Zitat M. Durga Prakash, S.R.K. Vanjari, C.S. Sharma, S.G. Singh, Ultrasensitive, label free, chemiresistive nanobiosensor using multiwalled carbon nanotubes embedded electrospun SU-8 nanofibers. Sensors 16, 1354, 15 pp (2016)CrossRef M. Durga Prakash, S.R.K. Vanjari, C.S. Sharma, S.G. Singh, Ultrasensitive, label free, chemiresistive nanobiosensor using multiwalled carbon nanotubes embedded electrospun SU-8 nanofibers. Sensors 16, 1354, 15 pp (2016)CrossRef
86.
Zurück zum Zitat G. Hughes, K. Westmacott, K.C. Honeychurch, A. Crew, R.M. Pemberton, J.P. Hart, Recent advances in the fabrication and application of screen-printed electrochemical (bio)sensors based on carbon materials for biomedical, agri-food and environmental analyses. Biosensors 6, 50 (2016). 39 ppCrossRef G. Hughes, K. Westmacott, K.C. Honeychurch, A. Crew, R.M. Pemberton, J.P. Hart, Recent advances in the fabrication and application of screen-printed electrochemical (bio)sensors based on carbon materials for biomedical, agri-food and environmental analyses. Biosensors 6, 50 (2016). 39 ppCrossRef
87.
Zurück zum Zitat X. Sun, Z. Gong, Y. Cao, X. Wang, Acetylcholiesterase biosensor based on poly(diallyldimethylammonium chloride)-multi-walled carbon nanotubes-graphene hybrid film. Nano-Micro Lett. 5(1), 47–56 (2013)CrossRef X. Sun, Z. Gong, Y. Cao, X. Wang, Acetylcholiesterase biosensor based on poly(diallyldimethylammonium chloride)-multi-walled carbon nanotubes-graphene hybrid film. Nano-Micro Lett. 5(1), 47–56 (2013)CrossRef
88.
Zurück zum Zitat B.C. Kim, I. Lee, S.-J. Kwon, et al., Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells. Sci. Rep. 7, 40202 (2017)CrossRef B.C. Kim, I. Lee, S.-J. Kwon, et al., Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells. Sci. Rep. 7, 40202 (2017)CrossRef
89.
Zurück zum Zitat Z. Jiang, D. Chen, Y. Yu, J. Miao, Y. Liu, L. Zhang, Composite fibers prepared from multi-walled carbon nanotubes/cellulose dispersed/dissolved in ammonium/dimethyl sulfoxide mixed solvent. RSC Adv. 7, 2186–2192 (2017)CrossRef Z. Jiang, D. Chen, Y. Yu, J. Miao, Y. Liu, L. Zhang, Composite fibers prepared from multi-walled carbon nanotubes/cellulose dispersed/dissolved in ammonium/dimethyl sulfoxide mixed solvent. RSC Adv. 7, 2186–2192 (2017)CrossRef
90.
Zurück zum Zitat J. Foldyna, V. Foldyna, M. Zelenák, Dispersion of carbon nanotubes for application in cement composites. Procedia Eng. 149, 94–99 (2016)CrossRef J. Foldyna, V. Foldyna, M. Zelenák, Dispersion of carbon nanotubes for application in cement composites. Procedia Eng. 149, 94–99 (2016)CrossRef
91.
Zurück zum Zitat T. Jarolim, M. Labaj, R. Hela, K. Michnova, Carbon nanotubes in cementitious composites: dispersion, implementation, and influence on mechanical characteristics. Adv. Mater. Sci. Eng. 2016., Article ID 7508904, 6 T. Jarolim, M. Labaj, R. Hela, K. Michnova, Carbon nanotubes in cementitious composites: dispersion, implementation, and influence on mechanical characteristics. Adv. Mater. Sci. Eng. 2016., Article ID 7508904, 6
92.
Zurück zum Zitat M.G. Raucci, M. Alvarez-Perez, D. Giugliano, S. Zeppetelli, L. Ambrosio, Properties of carbon nanotube-dispersed Sr-hydroxyapatite injectable material for bone defects. Regen Biomater. 3(1), 13–23 (2016)CrossRef M.G. Raucci, M. Alvarez-Perez, D. Giugliano, S. Zeppetelli, L. Ambrosio, Properties of carbon nanotube-dispersed Sr-hydroxyapatite injectable material for bone defects. Regen Biomater. 3(1), 13–23 (2016)CrossRef
93.
Zurück zum Zitat Y. Dror, W. Salalha, W. Pyckhout-Hintzen, et al., From carbon nanotube dispersion to composite nanofibers. Progr. Colloid Polym. Sci. 130, 64–69 (2005) Y. Dror, W. Salalha, W. Pyckhout-Hintzen, et al., From carbon nanotube dispersion to composite nanofibers. Progr. Colloid Polym. Sci. 130, 64–69 (2005)
94.
Zurück zum Zitat J.-S. Kim, G.-W. Kim, Hysteresis compensation of piezoresistive carbon nanotube/polydimethylsiloxane composite-based force sensors. Sensors 17, 229 (2017). 12 ppCrossRef J.-S. Kim, G.-W. Kim, Hysteresis compensation of piezoresistive carbon nanotube/polydimethylsiloxane composite-based force sensors. Sensors 17, 229 (2017). 12 ppCrossRef
95.
Zurück zum Zitat S.-H. Park, J. Bae, Polymer composite containing carbon nanotubes and their applications. Rec. Patents Nanotechn. 11(2), 109–115 (2017) S.-H. Park, J. Bae, Polymer composite containing carbon nanotubes and their applications. Rec. Patents Nanotechn. 11(2), 109–115 (2017)
96.
Zurück zum Zitat S. Boukheir, A. Len, J. Füzi, V. Kenderesi, Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites. J. Appl. Polym. Sci. 134(8), 44514 (2017)CrossRef S. Boukheir, A. Len, J. Füzi, V. Kenderesi, Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites. J. Appl. Polym. Sci. 134(8), 44514 (2017)CrossRef
97.
Zurück zum Zitat M. Shigeta, K. Kamiya, M. Uejima, S. Okada, Dispersion of carbon nanotubes in organic solvent by commercial polymers with ethylene chains: Experimental and theoretical studies. Jpn. J. Appl. Phys. 54, 035101 (2015)CrossRef M. Shigeta, K. Kamiya, M. Uejima, S. Okada, Dispersion of carbon nanotubes in organic solvent by commercial polymers with ethylene chains: Experimental and theoretical studies. Jpn. J. Appl. Phys. 54, 035101 (2015)CrossRef
98.
Zurück zum Zitat S.-H. Jang, S. Kawashima, H. Yin, Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes. Materials 9, 220 (2016). 11 ppCrossRef S.-H. Jang, S. Kawashima, H. Yin, Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes. Materials 9, 220 (2016). 11 ppCrossRef
99.
Zurück zum Zitat A. Mukherjee, S. Majumdar, A.D. Servin, L. Pagano, O.P. Dhankher, J.C. White, Carbon nanomaterials in agriculture: a critical review. Front. Plant Sci. 7, 172 (2016). 16 ppCrossRef A. Mukherjee, S. Majumdar, A.D. Servin, L. Pagano, O.P. Dhankher, J.C. White, Carbon nanomaterials in agriculture: a critical review. Front. Plant Sci. 7, 172 (2016). 16 ppCrossRef
100.
Zurück zum Zitat B.D. Che, L.-T.T. Nguyen, B.Q. Nguyen, et al., Effects of carbon nanotube dispersion methods on the radar absorbing properties of MWCNT/epoxy nanocomposites. Macromol. Res. 22(11), 1221–1228 (2014)CrossRef B.D. Che, L.-T.T. Nguyen, B.Q. Nguyen, et al., Effects of carbon nanotube dispersion methods on the radar absorbing properties of MWCNT/epoxy nanocomposites. Macromol. Res. 22(11), 1221–1228 (2014)CrossRef
101.
Zurück zum Zitat V.S.W. Chan, Nanomedicine: an unresolved regulatory issue. Regul. Toxicol. Pharmacol. 46(3), 218–224 (2006)CrossRef V.S.W. Chan, Nanomedicine: an unresolved regulatory issue. Regul. Toxicol. Pharmacol. 46(3), 218–224 (2006)CrossRef
102.
Zurück zum Zitat Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, Supramolecular chemistry on water- soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1), 50–56 (2007)CrossRef Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, Supramolecular chemistry on water- soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1), 50–56 (2007)CrossRef
103.
Zurück zum Zitat C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. BBA-Biomembranes 1758(3), 404–412 (2006)CrossRef C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. BBA-Biomembranes 1758(3), 404–412 (2006)CrossRef
104.
Zurück zum Zitat A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9(6), 674–679 (2005)CrossRef A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9(6), 674–679 (2005)CrossRef
105.
Zurück zum Zitat K. Fu, W. Huang, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y.-P. Sun, Functionalization of carbon nanotubes with bovine serum albumin in homogeneous aqueous solution. J. Nanosci. Nanotechn. 2(5), 457–461 (2002)CrossRef K. Fu, W. Huang, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y.-P. Sun, Functionalization of carbon nanotubes with bovine serum albumin in homogeneous aqueous solution. J. Nanosci. Nanotechn. 2(5), 457–461 (2002)CrossRef
106.
Zurück zum Zitat L.W. Zhang, L. Zeng, A.R. Barron, N.A. Monteiro-Riviere, Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int. J. Toxicology 26(2), 103–113 (2007)CrossRef L.W. Zhang, L. Zeng, A.R. Barron, N.A. Monteiro-Riviere, Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int. J. Toxicology 26(2), 103–113 (2007)CrossRef
107.
Zurück zum Zitat X. Dong, Z. Sun, X. Wang, D. Zhu, L. Liu, X. Leng, Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC. Drug Deliv. 24(1), 143–151 (2017)CrossRef X. Dong, Z. Sun, X. Wang, D. Zhu, L. Liu, X. Leng, Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC. Drug Deliv. 24(1), 143–151 (2017)CrossRef
108.
Zurück zum Zitat S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.-H. Kim, Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46, 158–196 (2017)CrossRef S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.-H. Kim, Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46, 158–196 (2017)CrossRef
109.
Zurück zum Zitat S. Sharma, N. Kumar Mehra, K. Jain, N. Kumar Jain, Effect of functionalization on drug delivery potential of carbon nanotubes. Art. Cells. Nanomed. Biotechn. 44(8), 1851–1860 (2016)CrossRef S. Sharma, N. Kumar Mehra, K. Jain, N. Kumar Jain, Effect of functionalization on drug delivery potential of carbon nanotubes. Art. Cells. Nanomed. Biotechn. 44(8), 1851–1860 (2016)CrossRef
110.
Zurück zum Zitat P.S. Uttekar, A.M. Kulkarni, P.N. Sable, P.D. Chaudhari, Surface modification of carbon nano tubes with nystatin for drug delivery applications. Indian J. Pharm. Educ. Res. 50(3), 385–390 (2016)CrossRef P.S. Uttekar, A.M. Kulkarni, P.N. Sable, P.D. Chaudhari, Surface modification of carbon nano tubes with nystatin for drug delivery applications. Indian J. Pharm. Educ. Res. 50(3), 385–390 (2016)CrossRef
111.
Zurück zum Zitat T. Ohta, Y. Hashida, F. Yamashita, M. Hashida, Development of novel drug and gene delivery carriers composed of single-walled carbon nanotubes and designed peptides with PEGylation. J. Pharm. Sci. 105(9), 2815–2824 (2016)CrossRef T. Ohta, Y. Hashida, F. Yamashita, M. Hashida, Development of novel drug and gene delivery carriers composed of single-walled carbon nanotubes and designed peptides with PEGylation. J. Pharm. Sci. 105(9), 2815–2824 (2016)CrossRef
112.
Zurück zum Zitat M. Kawaguchi, T. Fukushima, T. Hayakawa, N. Nakashima, Y. Inoue, S. Takeda, K. Okamura, K. Taniguchi, Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. Dent. Mater. J. 25(4), 719–725 (2006)CrossRef M. Kawaguchi, T. Fukushima, T. Hayakawa, N. Nakashima, Y. Inoue, S. Takeda, K. Okamura, K. Taniguchi, Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. Dent. Mater. J. 25(4), 719–725 (2006)CrossRef
113.
Zurück zum Zitat C.J. Gannon, P. Cherukuri, B.I. Yakobson, L. Cognet, J.S. Kanzius, C. Kittrell, B.R. Weisman, S.A. Curley, Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110(12), 2654–2665 (2007)CrossRef C.J. Gannon, P. Cherukuri, B.I. Yakobson, L. Cognet, J.S. Kanzius, C. Kittrell, B.R. Weisman, S.A. Curley, Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110(12), 2654–2665 (2007)CrossRef
114.
Zurück zum Zitat R.P. Feazell, N. Nakayama-Ratchford, H. Dai, S.J. Lippard, Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Amer. Chem. Soc. 129, 8438–8439 (2007)CrossRef R.P. Feazell, N. Nakayama-Ratchford, H. Dai, S.J. Lippard, Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Amer. Chem. Soc. 129, 8438–8439 (2007)CrossRef
115.
Zurück zum Zitat Y. Hwang, S.-H. Park, J.W. Lee, Applications of functionalized carbon nanotubes for the therapy and diagnosis of cancer. Polymers 9, 13 (2017). 26 ppCrossRef Y. Hwang, S.-H. Park, J.W. Lee, Applications of functionalized carbon nanotubes for the therapy and diagnosis of cancer. Polymers 9, 13 (2017). 26 ppCrossRef
116.
Zurück zum Zitat N.M. Bardhan, 30 years of advances in functionalization of carbon nanomaterials for biomedical applications: a practical review. (Annual issue: early career scholars in materials science). J. Mater. Res. 32(1), 107–127 (2017)CrossRef N.M. Bardhan, 30 years of advances in functionalization of carbon nanomaterials for biomedical applications: a practical review. (Annual issue: early career scholars in materials science). J. Mater. Res. 32(1), 107–127 (2017)CrossRef
117.
Zurück zum Zitat E. Heister, E.W. Brunner, G.R. Dieckmann, I. Jurewicz, A.B. Dalton, Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl. Mater. Interfaces 5(6), 1870–1891 (2013)CrossRef E. Heister, E.W. Brunner, G.R. Dieckmann, I. Jurewicz, A.B. Dalton, Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl. Mater. Interfaces 5(6), 1870–1891 (2013)CrossRef
118.
Zurück zum Zitat I. Jesion, M. Skibniewski, E. Skibniewska, et al., Graphene and carbon nanocompounds: biofunctionalization and applications in tissue engineering. Biotechnol. Biotechnol. Equip. 29(3), 415–422 (2015)CrossRef I. Jesion, M. Skibniewski, E. Skibniewska, et al., Graphene and carbon nanocompounds: biofunctionalization and applications in tissue engineering. Biotechnol. Biotechnol. Equip. 29(3), 415–422 (2015)CrossRef
119.
Zurück zum Zitat R. Amezcua, A. Shirolkar, C. Fraze, D.A. Stout, Nanomaterials for cardiac myocyte tissue engineering. Nano 6, 133 (2016). 15 pp R. Amezcua, A. Shirolkar, C. Fraze, D.A. Stout, Nanomaterials for cardiac myocyte tissue engineering. Nano 6, 133 (2016). 15 pp
120.
Zurück zum Zitat J. Venkatesan, R. Ramjee Pallela, S.-K. Kim, Applications of carbon nanomaterials in bone tissue engineering. J. Biomed. Nanotechnol. 10, 3105–3123 (2014)CrossRef J. Venkatesan, R. Ramjee Pallela, S.-K. Kim, Applications of carbon nanomaterials in bone tissue engineering. J. Biomed. Nanotechnol. 10, 3105–3123 (2014)CrossRef
121.
Zurück zum Zitat N. Burblies, J. Schulze, H.-C. Schwarz, Coatings of different carbon nanotubes on platinum electrodes for neuronal devices: preparation, cytocompatibility and interaction with spiral ganglion cells. PLoS One 11(7), e0158571 (2016)CrossRef N. Burblies, J. Schulze, H.-C. Schwarz, Coatings of different carbon nanotubes on platinum electrodes for neuronal devices: preparation, cytocompatibility and interaction with spiral ganglion cells. PLoS One 11(7), e0158571 (2016)CrossRef
122.
Zurück zum Zitat J.L. Hernandez-Lopez, E.R. Alvizo-Paez, S.E. Moya, J. Ruiz-Garcia, Ordered carbon nanotube thin films produced by the trapping of water-soluble single-wall carbon nanotubes at the air/water interface. Carbon 45(12), 2448–2450 (2007)CrossRef J.L. Hernandez-Lopez, E.R. Alvizo-Paez, S.E. Moya, J. Ruiz-Garcia, Ordered carbon nanotube thin films produced by the trapping of water-soluble single-wall carbon nanotubes at the air/water interface. Carbon 45(12), 2448–2450 (2007)CrossRef
123.
Zurück zum Zitat J. Li, Y. Zhang, Large-scale aligned carbon nanotubes films. Physica E 33(1), 235–239 (2006)CrossRef J. Li, Y. Zhang, Large-scale aligned carbon nanotubes films. Physica E 33(1), 235–239 (2006)CrossRef
124.
Zurück zum Zitat M.A.H. Nawaz, S. Rauf, et al., One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker. Sensors 16, 1651 (2016). 15 ppCrossRef M.A.H. Nawaz, S. Rauf, et al., One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker. Sensors 16, 1651 (2016). 15 ppCrossRef
125.
Zurück zum Zitat F. Li, B. Tang, J. Xiu, S. Shufen Zhang, Hydrophilic modification of multi-walled carbon nanotube for building photonic crystals with enhanced color visibility and mechanical strength. Molecules 21, 547 (2016). 9 ppCrossRef F. Li, B. Tang, J. Xiu, S. Shufen Zhang, Hydrophilic modification of multi-walled carbon nanotube for building photonic crystals with enhanced color visibility and mechanical strength. Molecules 21, 547 (2016). 9 ppCrossRef
126.
Zurück zum Zitat X. Meng, Y. Liu, M. Huang, J.-P. Cao, Flexible perfluoroalkoxy films filled with carbon nanotubes and their electric heating property. J. Appl. Polym. Sci. 134(18), 44782 (2017). 6 ppCrossRef X. Meng, Y. Liu, M. Huang, J.-P. Cao, Flexible perfluoroalkoxy films filled with carbon nanotubes and their electric heating property. J. Appl. Polym. Sci. 134(18), 44782 (2017). 6 ppCrossRef
127.
Zurück zum Zitat A. Almowarai, Y. Ueno, Y. Show, Fabrication of CNT dispersion fluid by wet-jet milling method for coating on bipolar plate of fuel cell. J. Nanomater., 7 (2015., Article ID 315017) A. Almowarai, Y. Ueno, Y. Show, Fabrication of CNT dispersion fluid by wet-jet milling method for coating on bipolar plate of fuel cell. J. Nanomater., 7 (2015., Article ID 315017)
128.
Zurück zum Zitat A.G. Rozhin, Y. Sakakibara, M. Tokumoto, H. Kataura, Y. Achiba, Near-infrared nonlinear optical properties of single-wall carbon nanotubes embedded in polymer film. Thin Solid Films 464, 368–372 (2004)CrossRef A.G. Rozhin, Y. Sakakibara, M. Tokumoto, H. Kataura, Y. Achiba, Near-infrared nonlinear optical properties of single-wall carbon nanotubes embedded in polymer film. Thin Solid Films 464, 368–372 (2004)CrossRef
129.
Zurück zum Zitat K. Yu, Z. Zhu, M. Xu, Q. Li, W. Lu, Q. Chen, Soluble carbon nanotube films treated using a hydrogen plasma for uniform electron field emission. Surf. Coat. Technol. 179(1), 63–69 (2004)CrossRef K. Yu, Z. Zhu, M. Xu, Q. Li, W. Lu, Q. Chen, Soluble carbon nanotube films treated using a hydrogen plasma for uniform electron field emission. Surf. Coat. Technol. 179(1), 63–69 (2004)CrossRef
130.
Zurück zum Zitat C. Hu, X. Chen, S. Hu, Water-soluble single-walled carbon nanotubes films: preparation, characterization and applications as electrochemical sensing films. J. Electroanalytical Chem. 586(1), 77–85 (2006)CrossRef C. Hu, X. Chen, S. Hu, Water-soluble single-walled carbon nanotubes films: preparation, characterization and applications as electrochemical sensing films. J. Electroanalytical Chem. 586(1), 77–85 (2006)CrossRef
131.
Zurück zum Zitat J. Zaumseil, Single-walled carbon nanotube networks for flexible and printed electronics. Semicond. Sci. Technol. 30, 074001 (2015). 20 ppCrossRef J. Zaumseil, Single-walled carbon nanotube networks for flexible and printed electronics. Semicond. Sci. Technol. 30, 074001 (2015). 20 ppCrossRef
132.
Zurück zum Zitat S. Kumar, B.A. Cola, R. Jackson, S. Graham, A review of carbon nanotube ensembles as flexible electronics and advanced packaging materials. J. Electron. Packag. 133, 020906 (2011). 12 ppCrossRef S. Kumar, B.A. Cola, R. Jackson, S. Graham, A review of carbon nanotube ensembles as flexible electronics and advanced packaging materials. J. Electron. Packag. 133, 020906 (2011). 12 ppCrossRef
133.
Zurück zum Zitat S. Lawes, A. Riese, Q. Sun, N. Cheng, X. Sun, Printing nanostructured carbon for energy storage and conversion applications. Carbon 92, 150–176 (2015)CrossRef S. Lawes, A. Riese, Q. Sun, N. Cheng, X. Sun, Printing nanostructured carbon for energy storage and conversion applications. Carbon 92, 150–176 (2015)CrossRef
134.
Zurück zum Zitat M.A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M.L. Usrey, M.S. Strano, et al., Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett. 4(9), 1643–1647 (2004)CrossRef M.A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M.L. Usrey, M.S. Strano, et al., Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett. 4(9), 1643–1647 (2004)CrossRef
135.
Zurück zum Zitat G.S. Tulevski, J. Hannon, A. Afzali, Z. Chen, P. Avouris, C.R. Kagan, Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays. J. Amer. Chem. Soc. 129(39), 11964–11968 (2007)CrossRef G.S. Tulevski, J. Hannon, A. Afzali, Z. Chen, P. Avouris, C.R. Kagan, Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays. J. Amer. Chem. Soc. 129(39), 11964–11968 (2007)CrossRef
136.
Zurück zum Zitat M.I.H. Panhuis, J. Wu, S.A. Ashraf, G.G. Wallace, Conducting textiles from single-walled carbon nanotubes. Synth. Met. 157(8), 358–362 (2007)CrossRef M.I.H. Panhuis, J. Wu, S.A. Ashraf, G.G. Wallace, Conducting textiles from single-walled carbon nanotubes. Synth. Met. 157(8), 358–362 (2007)CrossRef
137.
Zurück zum Zitat X. Huang, R.K. Kobos, G. Xu, Hair coloring and cosmetic compositions comprising carbon nanotubes. US7276088 (2007) X. Huang, R.K. Kobos, G. Xu, Hair coloring and cosmetic compositions comprising carbon nanotubes. US7276088 (2007)
138.
Zurück zum Zitat A.J. Miller, R.A. Hatton, S.R.P. Silva, Interpenetrating multiwall carbon nanotube electrodes for organic solar cells. Appl. Phys. Lett. 89, 133117 (2006)CrossRef A.J. Miller, R.A. Hatton, S.R.P. Silva, Interpenetrating multiwall carbon nanotube electrodes for organic solar cells. Appl. Phys. Lett. 89, 133117 (2006)CrossRef
139.
Zurück zum Zitat H.A. Alturaif, Z.A. ALOthman, J.G. Shapter, S.M. Wabaidur, Use of carbon nanotubes (CNTs) with polymers in solar cells. Molecules 19, 17329–17344 (2014)CrossRef H.A. Alturaif, Z.A. ALOthman, J.G. Shapter, S.M. Wabaidur, Use of carbon nanotubes (CNTs) with polymers in solar cells. Molecules 19, 17329–17344 (2014)CrossRef
140.
Zurück zum Zitat T. Grace, L.P. Yu, C. Gibson, et al., Investigating the effect of carbon nanotube diameter and wall number in carbon nanotube/silicon heterojunction solar cells. Nano 6, 52 (2016). 13 pp T. Grace, L.P. Yu, C. Gibson, et al., Investigating the effect of carbon nanotube diameter and wall number in carbon nanotube/silicon heterojunction solar cells. Nano 6, 52 (2016). 13 pp
141.
Zurück zum Zitat C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta Biomembr. 1758(3), 404–412 (2006)CrossRef C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta Biomembr. 1758(3), 404–412 (2006)CrossRef
Metadaten
Titel
Applications and Cost-Benefit Data
verfasst von
Boris Ildusovich Kharisov
Oxana Vasilievna Kharissova
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-03505-1_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.