Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

23.04.2019 | Original Paper | Ausgabe 5/2019

Geotechnical and Geological Engineering 5/2019

Applying Bayesian Models to Forecast Rock Mass Modulus

Zeitschrift:
Geotechnical and Geological Engineering > Ausgabe 5/2019
Autoren:
Hadi Fattahi, Nastaran Zandy Ilghani
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The deformation modulus of a rock mass (Em) is one of the most significant properties used by designers for estimating deformation behavior of rock masses encountered in rock engineering projects (slopes, foundations and tunnels). The Em can only be determined by employing large-scale in situ tests on the rock mass, itself, for example, plate jacking, plate loading, pressuremeter, flat dilatometer, and Goodman jacking. It is sometimes difficult to apply the large scale in situ tests because of time consuming processes and installation required. To overcome this difficulty, the current study aims at predicting the Em on the basis of the rock parameters including the uniaxial compressive strength of intact rock, rock mass rating, Depth and elastic modulus of intact rock (Ei). The Bayesian inference approach is implemented to identify the most appropriate models for estimating the Em among six candidate models that have been proposed. The models were applied to available data given in open source literature. The unknown parameters of the models are considered as random variables. The WinBUGS software which uses Bayesian analysis of complex statistical models and Markov chain Monte Carlo (MCMC) techniques is employed to compute the posterior predictive distributions. The mean values of the model parameters obtained via MCMC simulations are considered for the model prediction performance evaluation. Various statistical performance indexes indexes [mean squared error, root mean squared error, squared correlation coefficient (R2) and mean absolute percentage error] were utilized to compare the performance of estimation models. Overall, the results indicate that the proposed Em model possesses satisfactory predictive performance.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2019

Geotechnical and Geological Engineering 5/2019 Zur Ausgabe