Skip to main content
Erschienen in: Russian Journal of Nondestructive Testing 6/2021

01.06.2021 | ACOUSTIC METHODS

Applying Plane Wave Imaging Technology in Ultrasonic Nondestructive Testing

verfasst von: E. G. Bazulin, I. V. Evseev

Erschienen in: Russian Journal of Nondestructive Testing | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Along with such advantages as high resolution over the entire area of reflector image reconstruction and the ability to produce images taking into account the reflection from and transformation of wave type at the boundaries of a test object, reconstruction of reflector images by the digital antenna focusing (DFA) method has several disadvantages, including a large volume of measured echo signals, long image reconstruction time, and an insufficiently high energy of ultrasonic waves introduced into the test object. Plane wave imaging (PWI) combines the benefits of phased antenna array (PAA) and DFA technologies. In the PWI mode, all elements of the antenna array (AA) operate when a plane wave is emitted (as in the PAA mode), which makes it possible to increase the energy introduced into the test object, and echo signals are recorded by all elements of the AA (as in the DFA mode). Reflector images are reconstructed by the SAFT method. To produce an image, one can use the number of emitted plane waves less than the number of elements in the antenna array, thus decreasing the volume of measured echoes. Transferring calculations into the domain of spatial sectors allows improving the performance of reconstructing the images of reflectors. Model experiments have shown the positive and negative aspects of producing the images of reflectors by the PWI method compared to the DFA technique both with and without a wedge.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Advances in Phased Array Ultrasonic Technology Applications, Waltham: Olympus NDT, 2007. https://www. olympus-ims.com/en/resources/books/. Accessed November 26, 2020. Advances in Phased Array Ultrasonic Technology Applications, Waltham: Olympus NDT, 2007. https://​www.​ olympus-ims.com/en/resources/books/. Accessed November 26, 2020.
2.
Zurück zum Zitat Voronkov, V.A., Voronkov, I.V., Kozlov, V.N., Samokrutov, A.A., and Shevaldykin, V.G., On the applicability of antenna array technology in ultrasonic testing of hazardous production facilities, V Mire NK, 2011, no. 1, pp. 64–70. Voronkov, V.A., Voronkov, I.V., Kozlov, V.N., Samokrutov, A.A., and Shevaldykin, V.G., On the applicability of antenna array technology in ultrasonic testing of hazardous production facilities, V Mire NK, 2011, no. 1, pp. 64–70.
3.
Zurück zum Zitat Bazulin, E.G., Comparison of systems for ultrasonic nondestructive testing using antenna arrays or phased antenna arrays, Russ. J. Nondestr. Test., 2013, vol. 49, no. 7, pp. 404–423.CrossRef Bazulin, E.G., Comparison of systems for ultrasonic nondestructive testing using antenna arrays or phased antenna arrays, Russ. J. Nondestr. Test., 2013, vol. 49, no. 7, pp. 404–423.CrossRef
4.
Zurück zum Zitat Hunter, A.J., Drinkwater, B.W., and Wilcox, P.D., The wavenumber algorithm for full-matrix imaging using and ultrasonic array, NDT Int., 2006, vol. 39, no. 7, pp. 525–541.CrossRef Hunter, A.J., Drinkwater, B.W., and Wilcox, P.D., The wavenumber algorithm for full-matrix imaging using and ultrasonic array, NDT Int., 2006, vol. 39, no. 7, pp. 525–541.CrossRef
5.
Zurück zum Zitat Parfenov, V.I. and Golovanov, D.Yu., Detection of discrete sparse signals with a sampling frequency not exceeding the Nyquist frequency, J. Radio Electron., 2017, no. 6. http://jre.cplire.ru/jre/jun17/1/text.pdf. Accessed December 9, 2018. Parfenov, V.I. and Golovanov, D.Yu., Detection of discrete sparse signals with a sampling frequency not exceeding the Nyquist frequency, J. Radio Electron., 2017, no. 6. http://​jre.​cplire.​ru/​jre/​jun17/​1/​text.​pdf.​ Accessed December 9, 2018.
6.
Zurück zum Zitat Avagyan, V.K. and Bazulin, E.G., Increasing the rate of recording echo signals with an ultrasonic antenna array using code division multiple access technology, Russ. J. Nondestr. Test., 2020, vol. 56, no. 11, pp. 873–886.CrossRef Avagyan, V.K. and Bazulin, E.G., Increasing the rate of recording echo signals with an ultrasonic antenna array using code division multiple access technology, Russ. J. Nondestr. Test., 2020, vol. 56, no. 11, pp. 873–886.CrossRef
8.
Zurück zum Zitat Jeune, L., Imagerie ultrasonore par emission d’ondes planes pour le contrôle de structures complexes en immersion, Pour l’obtention du grade de Docteur de l’université Paris-Diderot, Paris, 2016. Jeune, L., Imagerie ultrasonore par emission d’ondes planes pour le contrôle de structures complexes en immersion, Pour l’obtention du grade de Docteur de l’université Paris-Diderot, Paris, 2016.
9.
Zurück zum Zitat Merabet, L., Robert, S., and Prada, C., Comparative study of 2D ultrasound imaging methods in the f-k domain and evaluation of their performances in a realistic NDT configuration, IEEE Trans. Ultrason. Eng., 2019, vol. 66, no. 4, pp. 772–788. https://doi.org/10.1063/1.5031654 Merabet, L., Robert, S., and Prada, C., Comparative study of 2D ultrasound imaging methods in the f-k domain and evaluation of their performances in a realistic NDT configuration, IEEE Trans. Ultrason. Eng., 2019, vol. 66, no. 4, pp. 772–788. https://​doi.​org/​10.​1063/​1.​5031654
10.
Zurück zum Zitat Dolmatov, D.O., Sednev, D.A., Bulavinov, A.N. et al. Applying the Algorithm of Calculation in the Frequency Domain to Ultrasonic Tomography of Layered Inhomogeneous Media Using Matrix Antenna Arrays, Russ. J. Nondestr. Test., 2019, vol. 55, no. 7, pp. 499–506.CrossRef Dolmatov, D.O., Sednev, D.A., Bulavinov, A.N. et al. Applying the Algorithm of Calculation in the Frequency Domain to Ultrasonic Tomography of Layered Inhomogeneous Media Using Matrix Antenna Arrays, Russ. J. Nondestr. Test., 2019, vol. 55, no. 7, pp. 499–506.CrossRef
11.
Zurück zum Zitat Kovalev, A.V., Kozlov, V.N., Samokrutov, A.A., Shevaldykin, V.G., and Yakovlev, N.N., Pulse echo method for testing concrete. Interference and spatial selection, Defektoskopiya, 1990, no. 2, pp. 29–41. Kovalev, A.V., Kozlov, V.N., Samokrutov, A.A., Shevaldykin, V.G., and Yakovlev, N.N., Pulse echo method for testing concrete. Interference and spatial selection, Defektoskopiya, 1990, no. 2, pp. 29–41.
12.
Zurück zum Zitat Taki, H., Taki, K., Sakamoto, T., Yamakawa, M., Shiina, T., Kudo, M., and Sato, T., High range resolution ultrasonographic vascular imaging using frequency domain interferometry with the Capon method, IEEE Trans. Med. Imaging., 2012, vol. 31, no. 2, pp. 417–429.CrossRef Taki, H., Taki, K., Sakamoto, T., Yamakawa, M., Shiina, T., Kudo, M., and Sato, T., High range resolution ultrasonographic vascular imaging using frequency domain interferometry with the Capon method, IEEE Trans. Med. Imaging., 2012, vol. 31, no. 2, pp. 417–429.CrossRef
13.
Zurück zum Zitat Born, M. and Wolf, E., Principles of Optics, Cambridge: Cambridge Univ. Press, 1999.CrossRef Born, M. and Wolf, E., Principles of Optics, Cambridge: Cambridge Univ. Press, 1999.CrossRef
14.
Zurück zum Zitat Bazulin, E.G., Allowing for inhomogeneous anisotropy of a welded joint when reconstructing reflector images from echo signals received by an ultrasonic antenna array, Russ. J. Nondestr. Test., 2017, vol. 53, no. 1, pp. 9–22.CrossRef Bazulin, E.G., Allowing for inhomogeneous anisotropy of a welded joint when reconstructing reflector images from echo signals received by an ultrasonic antenna array, Russ. J. Nondestr. Test., 2017, vol. 53, no. 1, pp. 9–22.CrossRef
15.
Zurück zum Zitat NVIDIA CUDA ™ technology. https://www.nvidia.com/ru-ru/technologies/cuda-x/. Accessed November 21, 2020. NVIDIA CUDA ™ technology. https://​www.​nvidia.​com/​ru-ru/​technologies/​cuda-x/​.​ Accessed November 21, 2020.
16.
Zurück zum Zitat Ugryumov, E.P., Programmable logic matrices, programmable matrix logic, basic matrix crystals, in Tsifrovaya skhemotekhnika. Uchebnoe posobie dlya VUZov (Digital Circuitry. A University Handbook), St. Petersburg: BHV-Petersburg, 2004, 2nd ed. Ugryumov, E.P., Programmable logic matrices, programmable matrix logic, basic matrix crystals, in Tsifrovaya skhemotekhnika. Uchebnoe posobie dlya VUZov (Digital Circuitry. A University Handbook), St. Petersburg: BHV-Petersburg, 2004, 2nd ed.
17.
Zurück zum Zitat Bazulin, E.G., Testing of weld patches in Дy800 pipelines with ultrasonic antenna arrays using the triple scanning method, Russ. J. Nondestr. Test., 2010, vol. 46, no. 7, pp. 498–506.CrossRef Bazulin, E.G., Testing of weld patches in Дy800 pipelines with ultrasonic antenna arrays using the triple scanning method, Russ. J. Nondestr. Test., 2010, vol. 46, no. 7, pp. 498–506.CrossRef
18.
Zurück zum Zitat Goryunov, A.A. and Saskovets, A.V., Obratnye zadachi rasseyaniya v akustike (Inverse Problems of Scattering in Acoustics), Moscow: Mosk. Gos. Univ., 1989. Goryunov, A.A. and Saskovets, A.V., Obratnye zadachi rasseyaniya v akustike (Inverse Problems of Scattering in Acoustics), Moscow: Mosk. Gos. Univ., 1989.
19.
Zurück zum Zitat Bazulin, E.G., Utilization of double scanning in ultrasonic testing to improve the quality of the scatterer images, Acoust. Phys., 2001, vol. 47, no. 6, pp. 649–653.CrossRef Bazulin, E.G., Utilization of double scanning in ultrasonic testing to improve the quality of the scatterer images, Acoust. Phys., 2001, vol. 47, no. 6, pp. 649–653.CrossRef
20.
Zurück zum Zitat Kokolev, S.A., Bazulin, E.G., and Bazulin, A.E., Application of linear interpolation for improving the quality of flaw images obtained by the spectral projection method during ultrasonic nondestructive testing, Russ. J. Nondestr. Test., 2009, vol. 45, no. 12, pp. 823–837.CrossRef Kokolev, S.A., Bazulin, E.G., and Bazulin, A.E., Application of linear interpolation for improving the quality of flaw images obtained by the spectral projection method during ultrasonic nondestructive testing, Russ. J. Nondestr. Test., 2009, vol. 45, no. 12, pp. 823–837.CrossRef
21.
Zurück zum Zitat Official site of ECHO+ company. URL: http://www.echoplus.ru. Accessed November 21, 2020. Official site of ECHO+ company. URL: http://​www.​echoplus.​ru.​ Accessed November 21, 2020.
Metadaten
Titel
Applying Plane Wave Imaging Technology in Ultrasonic Nondestructive Testing
verfasst von
E. G. Bazulin
I. V. Evseev
Publikationsdatum
01.06.2021
Verlag
Pleiades Publishing
Erschienen in
Russian Journal of Nondestructive Testing / Ausgabe 6/2021
Print ISSN: 1061-8309
Elektronische ISSN: 1608-3385
DOI
https://doi.org/10.1134/S1061830921060048

Weitere Artikel der Ausgabe 6/2021

Russian Journal of Nondestructive Testing 6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.