Skip to main content

2022 | OriginalPaper | Buchkapitel

9. Aqueous Supramolecular Assemblies of Photocontrolled Molecular Amphiphiles

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Amphiphilic molecules, are composed of hydrophobic and hydrophilic parts and the intrinsic tendence to assemble in aqueous conditions, producing numerous supramolecular assembled structures and functional systems. Some of the recent challenges in the design of adaptive, responsive, far-from-equilibrium functional systems in aqueous environments, the proper design of photo-controlled moieties in intrinsic charged amphiphilic molecular structures offers fruitful opportunities to create supramolecular assembly systems, based on electrostatic interaction, with response to light in aqueous environment. In this chapter, we discuss the design strategy of photo-controlled molecular amphiphiles, the supramolecular assembled structures in aqueous environment and at air–water interfaces, as well as different strategies for producing dynamic functions in both isotropic and anisotropic supramolecular assembled materials. The motions at air–water interface, foam formation, reversible supramolecular assembly at nanometer length-scale, and life-like artificial muscle function are discussed. Manipulating the molecular structural design, supramolecular assembling conditions, and external stimulation, the photo-controlled molecular amphiphiles open directions toward applications ranging from controlled bio-target delivery to soft robotic.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vittorio Degiorgio P, Corti M (1985) Amphiphiles: micelles, vesicles and microemulsions. North-Holland Publishing Group, Amsterdam Vittorio Degiorgio P, Corti M (1985) Amphiphiles: micelles, vesicles and microemulsions. North-Holland Publishing Group, Amsterdam
2.
Zurück zum Zitat Domb C, Lebowitz JL, Gompper G, Schick M (1994) Self-assembling amphiphilic systems, phase transitions and critical phenemena. Academic Press, London Domb C, Lebowitz JL, Gompper G, Schick M (1994) Self-assembling amphiphilic systems, phase transitions and critical phenemena. Academic Press, London
3.
Zurück zum Zitat Lombardo D, Kiselev MA, Magazù S, Calandra P (2015) Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Adv Condens Matter Phys 2015:1–22 Lombardo D, Kiselev MA, Magazù S, Calandra P (2015) Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Adv Condens Matter Phys 2015:1–22
4.
Zurück zum Zitat Vittorio Degiorgio P (1985) Physics of amphiphiles, micelles and microemulsions. Europhys News 16:9–12CrossRef Vittorio Degiorgio P (1985) Physics of amphiphiles, micelles and microemulsions. Europhys News 16:9–12CrossRef
5.
Zurück zum Zitat Sorrenti A, Illa O, Ortuño RM (2013) Amphiphiles in aqueous solution: well beyond a soap bubble. Chem Soc Rev 42:8200–8219PubMedCrossRef Sorrenti A, Illa O, Ortuño RM (2013) Amphiphiles in aqueous solution: well beyond a soap bubble. Chem Soc Rev 42:8200–8219PubMedCrossRef
6.
Zurück zum Zitat Song S, Dong R, Wang D et al (2013) Temperature regulated supramolecular structures via modifying the balance of multiple non-covalent interactions. Soft Matter 9:4209–4218CrossRef Song S, Dong R, Wang D et al (2013) Temperature regulated supramolecular structures via modifying the balance of multiple non-covalent interactions. Soft Matter 9:4209–4218CrossRef
7.
Zurück zum Zitat Li D, Yin P, Liu T (2012) Supramolecular architectures assembled from amphiphilic hybrid polyoxometalates. Dalt Trans 41:2853–2861CrossRef Li D, Yin P, Liu T (2012) Supramolecular architectures assembled from amphiphilic hybrid polyoxometalates. Dalt Trans 41:2853–2861CrossRef
8.
Zurück zum Zitat Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev 110:6009–6048PubMedCrossRef Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev 110:6009–6048PubMedCrossRef
9.
Zurück zum Zitat Qi W, Wu L (2009) Polyoxometalate/polymer hybrid materials: fabrication and properties. Polym Int 58:1217–1225CrossRef Qi W, Wu L (2009) Polyoxometalate/polymer hybrid materials: fabrication and properties. Polym Int 58:1217–1225CrossRef
10.
Zurück zum Zitat Song A, Hao J (2009) Self-assembly of metal-ligand coordinated charged vesicles. Curr Opin Colloid Interface Sci 14:94–102CrossRef Song A, Hao J (2009) Self-assembly of metal-ligand coordinated charged vesicles. Curr Opin Colloid Interface Sci 14:94–102CrossRef
12.
13.
Zurück zum Zitat Chen YL, Chen S, Frank C, Israelachvili J (1992) Molecular mechanisms and kinetics during the self-assembly of surfactant layers. J Colloid Interface Sci 153:244–265CrossRef Chen YL, Chen S, Frank C, Israelachvili J (1992) Molecular mechanisms and kinetics during the self-assembly of surfactant layers. J Colloid Interface Sci 153:244–265CrossRef
14.
Zurück zum Zitat Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568CrossRef Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568CrossRef
15.
Zurück zum Zitat Ringsdorf H, Schlarb B, Venzmer J (1988) Molecular architecture and function of polymeric oriented systems: models for the study of organization, surface recognition, and dynamics of biomembranes. Angew Chem Int Ed Engl 27:113–158CrossRef Ringsdorf H, Schlarb B, Venzmer J (1988) Molecular architecture and function of polymeric oriented systems: models for the study of organization, surface recognition, and dynamics of biomembranes. Angew Chem Int Ed Engl 27:113–158CrossRef
16.
Zurück zum Zitat Aida T, Meijer EW (2020) Supramolecular polymers—we’ve come full circle. Isr J Chem 60:33–47CrossRef Aida T, Meijer EW (2020) Supramolecular polymers—we’ve come full circle. Isr J Chem 60:33–47CrossRef
17.
Zurück zum Zitat Mendes AC, Baran ET, Reis RL, Azevedo HS (2013) Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:582–612PubMedCrossRef Mendes AC, Baran ET, Reis RL, Azevedo HS (2013) Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:582–612PubMedCrossRef
18.
Zurück zum Zitat Kim HJ, Kim T, Lee M (2011) Responsive nanostructures from aqueous assembly of rigid—flexible block molecules. Acc Chem Res 44:72–82PubMedCrossRef Kim HJ, Kim T, Lee M (2011) Responsive nanostructures from aqueous assembly of rigid—flexible block molecules. Acc Chem Res 44:72–82PubMedCrossRef
19.
Zurück zum Zitat Krieg E, Rybtchinski B (2011) Noncovalent water-based materials: robust yet adaptive. Chem A Eur J 17:9016–9026CrossRef Krieg E, Rybtchinski B (2011) Noncovalent water-based materials: robust yet adaptive. Chem A Eur J 17:9016–9026CrossRef
20.
Zurück zum Zitat Lim YB, Moon KS, Lee M (2009) Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks. Chem Soc Rev 38:925–934PubMedCrossRef Lim YB, Moon KS, Lee M (2009) Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks. Chem Soc Rev 38:925–934PubMedCrossRef
21.
Zurück zum Zitat Oshovsky GV, Reinhoudt DN, Verboom W (2007) Supramolecular chemistry in water. Angew Chem Int Ed 46:2366–2393CrossRef Oshovsky GV, Reinhoudt DN, Verboom W (2007) Supramolecular chemistry in water. Angew Chem Int Ed 46:2366–2393CrossRef
22.
Zurück zum Zitat Kato T, Mizoshita N, Kishimoto K (2005) Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed 45:38–68CrossRef Kato T, Mizoshita N, Kishimoto K (2005) Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed 45:38–68CrossRef
23.
Zurück zum Zitat Luk YY, Abbott NL (2002) Applications of functional surfactants. Curr Opin Colloid Interface Sci 7:267–275CrossRef Luk YY, Abbott NL (2002) Applications of functional surfactants. Curr Opin Colloid Interface Sci 7:267–275CrossRef
24.
Zurück zum Zitat Bong DT, Clark TD, Granja JR, Reza Ghadiri M (2001) Self-assembling organic nanotubes. Angew Chem Int Ed 40:988–1011CrossRef Bong DT, Clark TD, Granja JR, Reza Ghadiri M (2001) Self-assembling organic nanotubes. Angew Chem Int Ed 40:988–1011CrossRef
26.
27.
Zurück zum Zitat Krieg E, Niazov-Elkan A, Cohen E et al (2019) Noncovalent aqua materials based on perylene diimides. Acc Chem Res 52:2634–2646PubMedCrossRef Krieg E, Niazov-Elkan A, Cohen E et al (2019) Noncovalent aqua materials based on perylene diimides. Acc Chem Res 52:2634–2646PubMedCrossRef
28.
Zurück zum Zitat Hoffmann H (1994) Fascinating phenomena in surfactant chemistry. Adv Mater 6:116–129CrossRef Hoffmann H (1994) Fascinating phenomena in surfactant chemistry. Adv Mater 6:116–129CrossRef
29.
Zurück zum Zitat Song S, Song A, Hao J (2014) Self-assembled structures of amphiphiles regulated via implanting external stimuli. RSC Adv 4:41864–41875CrossRef Song S, Song A, Hao J (2014) Self-assembled structures of amphiphiles regulated via implanting external stimuli. RSC Adv 4:41864–41875CrossRef
30.
Zurück zum Zitat Wang C, Wang Z, Zhang X (2012) Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Acc Chem Res 45:608–618PubMedCrossRef Wang C, Wang Z, Zhang X (2012) Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Acc Chem Res 45:608–618PubMedCrossRef
31.
Zurück zum Zitat Soc C, Sato K, Hendricks MP et al (2018) Peptide supramolecular materials for therapeutics. Chem Soc Rev 47:7539–7551CrossRef Soc C, Sato K, Hendricks MP et al (2018) Peptide supramolecular materials for therapeutics. Chem Soc Rev 47:7539–7551CrossRef
32.
Zurück zum Zitat Goor OJGM, Hendrikse SIS, Dankers PYW, Meijer EW (2017) From supramolecular polymers to multi-component biomaterials. Chem Soc Rev 46:6621–6637PubMedCrossRef Goor OJGM, Hendrikse SIS, Dankers PYW, Meijer EW (2017) From supramolecular polymers to multi-component biomaterials. Chem Soc Rev 46:6621–6637PubMedCrossRef
33.
Zurück zum Zitat Krieg E, Bastings MMC, Besenius P, Rybtchinski B (2016) Supramolecular polymers in aqueous media. Chem Rev 116:2414–2477PubMedCrossRef Krieg E, Bastings MMC, Besenius P, Rybtchinski B (2016) Supramolecular polymers in aqueous media. Chem Rev 116:2414–2477PubMedCrossRef
34.
Zurück zum Zitat Würthner F, Saha-Möller CR, Fimmel B et al (2016) Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev 116:962–1052PubMedCrossRef Würthner F, Saha-Möller CR, Fimmel B et al (2016) Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev 116:962–1052PubMedCrossRef
35.
Zurück zum Zitat Dong R, Zhou Y, Huang X et al (2015) Functional supramolecular polymers for biomedical applications. Adv Mater 27:498–526PubMedCrossRef Dong R, Zhou Y, Huang X et al (2015) Functional supramolecular polymers for biomedical applications. Adv Mater 27:498–526PubMedCrossRef
36.
Zurück zum Zitat Du X, Zhou J, Xu B (2014) Supramolecular hydrogels made of basic biological building blocks. Chem An Asian J 9:1446–1472CrossRef Du X, Zhou J, Xu B (2014) Supramolecular hydrogels made of basic biological building blocks. Chem An Asian J 9:1446–1472CrossRef
37.
Zurück zum Zitat Ma X, Tian H (2014) Stimuli-responsive supramolecular polymers in aqueous solution. Acc Chem Res 47:1971–1981PubMedCrossRef Ma X, Tian H (2014) Stimuli-responsive supramolecular polymers in aqueous solution. Acc Chem Res 47:1971–1981PubMedCrossRef
38.
Zurück zum Zitat Matile S, Jentzsch AV, Montenegro J, Fin A (2011) Recent synthetic transport systems. Chem Soc Rev 40:2453–2474PubMedCrossRef Matile S, Jentzsch AV, Montenegro J, Fin A (2011) Recent synthetic transport systems. Chem Soc Rev 40:2453–2474PubMedCrossRef
39.
Zurück zum Zitat Mclntosh TJ, Simon SA (1994) Long- and short-range interactions between phospholipid/ganglioside GM1 bilayers. Biochemistry 33:10477–10486CrossRef Mclntosh TJ, Simon SA (1994) Long- and short-range interactions between phospholipid/ganglioside GM1 bilayers. Biochemistry 33:10477–10486CrossRef
40.
Zurück zum Zitat Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200PubMedCrossRef Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200PubMedCrossRef
41.
Zurück zum Zitat Wehner M, Würthner F (2020) Supramolecular polymerization through kinetic pathway control and living chain growth. Nat Rev Chem 4:38–53CrossRef Wehner M, Würthner F (2020) Supramolecular polymerization through kinetic pathway control and living chain growth. Nat Rev Chem 4:38–53CrossRef
42.
Zurück zum Zitat Kazantsev RV, Dannenhoffer AJ, Weingarten AS et al (2017) Crystal-phase transitions and photocatalysis in supramolecular scaffolds. J Am Chem Soc 139:6120–6127PubMedPubMedCentralCrossRef Kazantsev RV, Dannenhoffer AJ, Weingarten AS et al (2017) Crystal-phase transitions and photocatalysis in supramolecular scaffolds. J Am Chem Soc 139:6120–6127PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Fukui T, Kawai S, Fujinuma S et al (2017) Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat Chem 9:493–499PubMedCrossRef Fukui T, Kawai S, Fujinuma S et al (2017) Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat Chem 9:493–499PubMedCrossRef
45.
Zurück zum Zitat Aliprandi A, Mauro M, De Cola L (2016) Controlling and imaging biomimetic self-assembly. Nat Chem 8:10–15PubMedCrossRef Aliprandi A, Mauro M, De Cola L (2016) Controlling and imaging biomimetic self-assembly. Nat Chem 8:10–15PubMedCrossRef
46.
Zurück zum Zitat Ogi S, Sugiyasu K, Manna S et al (2014) Living supramolecular polymerization realized through a biomimetic approach. Nat Chem 6:188–195PubMedCrossRef Ogi S, Sugiyasu K, Manna S et al (2014) Living supramolecular polymerization realized through a biomimetic approach. Nat Chem 6:188–195PubMedCrossRef
47.
Zurück zum Zitat Korevaar PA, De Greef TFA, Meijer EW (2014) Pathway complexity in π-conjugated materials. Chem Mater 26:576–586CrossRef Korevaar PA, De Greef TFA, Meijer EW (2014) Pathway complexity in π-conjugated materials. Chem Mater 26:576–586CrossRef
48.
Zurück zum Zitat Boekhoven J, Poolman JM, Maity C et al (2013) Catalytic control over supramolecular gel formation. Nat Chem 5:433–437PubMedCrossRef Boekhoven J, Poolman JM, Maity C et al (2013) Catalytic control over supramolecular gel formation. Nat Chem 5:433–437PubMedCrossRef
49.
Zurück zum Zitat Korevaar PA, George SJ, Markvoort AJ et al (2012) Pathway complexity in supramolecular polymerization. Nature 481:492–496PubMedCrossRef Korevaar PA, George SJ, Markvoort AJ et al (2012) Pathway complexity in supramolecular polymerization. Nature 481:492–496PubMedCrossRef
50.
Zurück zum Zitat Yan Q, Zhao Y (2013) CO2-stimulated diversiform deformations of polymer assemblies. J Am Chem Soc 135:16300–16303PubMedCrossRef Yan Q, Zhao Y (2013) CO2-stimulated diversiform deformations of polymer assemblies. J Am Chem Soc 135:16300–16303PubMedCrossRef
51.
Zurück zum Zitat Eastoe J, Vesperinas A (2005) Self-assembly of light-sensitive surfactants. Soft Matter 1:338–347PubMedCrossRef Eastoe J, Vesperinas A (2005) Self-assembly of light-sensitive surfactants. Soft Matter 1:338–347PubMedCrossRef
52.
Zurück zum Zitat Polarz S, Kunkel M, Donner A, Schlötter M (2018) Added-value surfactants. Chem A Eur J 24:18842–18856CrossRef Polarz S, Kunkel M, Donner A, Schlötter M (2018) Added-value surfactants. Chem A Eur J 24:18842–18856CrossRef
53.
Zurück zum Zitat Santer S (2018) Remote control of soft nano-objects by light using azobenzene containing surfactants. J Phys D Appl Phys 51:1–17CrossRef Santer S (2018) Remote control of soft nano-objects by light using azobenzene containing surfactants. J Phys D Appl Phys 51:1–17CrossRef
54.
Zurück zum Zitat Zhu H, Shangguan L, Shi B et al (2018) Recent progress in macrocyclic amphiphiles and macrocyclic host-based supra-amphiphiles. Mater Chem Front 2:2152–2174CrossRef Zhu H, Shangguan L, Shi B et al (2018) Recent progress in macrocyclic amphiphiles and macrocyclic host-based supra-amphiphiles. Mater Chem Front 2:2152–2174CrossRef
55.
Zurück zum Zitat Basílio N, García-Río L (2017) Photoswitchable vesicles. Curr Opin Colloid Interface Sci 32:29–38CrossRef Basílio N, García-Río L (2017) Photoswitchable vesicles. Curr Opin Colloid Interface Sci 32:29–38CrossRef
56.
Zurück zum Zitat Liu Y, Jessop PG, Cunningham M et al (2006) Switchable surfactants. Science 313(80–):958–960 Liu Y, Jessop PG, Cunningham M et al (2006) Switchable surfactants. Science 313(80–):958–960
57.
Zurück zum Zitat Wang A, Shi W, Huang J, Yan Y (2016) Adaptive soft molecular self-assemblies. Soft Matter 12:337–357PubMedCrossRef Wang A, Shi W, Huang J, Yan Y (2016) Adaptive soft molecular self-assemblies. Soft Matter 12:337–357PubMedCrossRef
58.
Zurück zum Zitat Brown P, Alan Hatton T, Eastoe J (2015) Magnetic surfactants. Curr Opin Colloid Interface Sci 20:140–150CrossRef Brown P, Alan Hatton T, Eastoe J (2015) Magnetic surfactants. Curr Opin Colloid Interface Sci 20:140–150CrossRef
59.
Zurück zum Zitat Frisch H, Besenius P (2014) pH-switchable self-assembled materials. Macromol Rapid Commun 36:346–363PubMedCrossRef Frisch H, Besenius P (2014) pH-switchable self-assembled materials. Macromol Rapid Commun 36:346–363PubMedCrossRef
60.
Zurück zum Zitat Singh J, Ranganathan R, Angayarkanny S et al (2013) pH-responsive aggregation states of chiral polymerizable amphiphiles from l-tyrosine and l-phenyl alanine in water. Langmuir 29:5734–5741PubMedPubMedCentralCrossRef Singh J, Ranganathan R, Angayarkanny S et al (2013) pH-responsive aggregation states of chiral polymerizable amphiphiles from l-tyrosine and l-phenyl alanine in water. Langmuir 29:5734–5741PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Seki T, Lin X, Yagai S (2013) Supramolecular engineering of perylene bisimide assemblies based on complementary multiple hydrogen bonding interactions. Asian J Org Chem 2:708–724CrossRef Seki T, Lin X, Yagai S (2013) Supramolecular engineering of perylene bisimide assemblies based on complementary multiple hydrogen bonding interactions. Asian J Org Chem 2:708–724CrossRef
62.
Zurück zum Zitat Song A, Dong S, Jia X et al (2005) An onion phase in salt-free zero-charged catanionic surfactant solutions. Angew Chem Int Ed 44:4018–4021CrossRef Song A, Dong S, Jia X et al (2005) An onion phase in salt-free zero-charged catanionic surfactant solutions. Angew Chem Int Ed 44:4018–4021CrossRef
63.
Zurück zum Zitat Brown P, Butts CP, Eastoe J (2013) Stimuli-responsive surfactants. Soft Matter 9:2365–2374CrossRef Brown P, Butts CP, Eastoe J (2013) Stimuli-responsive surfactants. Soft Matter 9:2365–2374CrossRef
64.
Zurück zum Zitat Lloyd GO, Steed JW (2009) Anion-tuning of supramolecular gel properties. Nat Chem 1:437–442PubMedCrossRef Lloyd GO, Steed JW (2009) Anion-tuning of supramolecular gel properties. Nat Chem 1:437–442PubMedCrossRef
66.
Zurück zum Zitat George M, Weiss RG (2001) Chemically reversible organogels via “latent” gelators. Aliphatic amines with carbon dioxide. J Am Chem Soc 123:10393–10394PubMedCrossRef George M, Weiss RG (2001) Chemically reversible organogels via “latent” gelators. Aliphatic amines with carbon dioxide. J Am Chem Soc 123:10393–10394PubMedCrossRef
67.
Zurück zum Zitat Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 47:8002–8018CrossRef Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 47:8002–8018CrossRef
68.
Zurück zum Zitat Vigier-Carrière C, Boulmedais F, Schaaf P, Jierry L (2018) Surface-assisted self-assembly strategies leading to supramolecular hydrogels. Angew Chem Int Ed 57:1448–1456CrossRef Vigier-Carrière C, Boulmedais F, Schaaf P, Jierry L (2018) Surface-assisted self-assembly strategies leading to supramolecular hydrogels. Angew Chem Int Ed 57:1448–1456CrossRef
69.
Zurück zum Zitat Tabor RF, McCoy TM, Hu Y, Wilkinson BL (2018) Physicochemical and biological characterisation of azobenzene-containing photoswitchable surfactants. Bull Chem Soc Jpn 91:932–939CrossRef Tabor RF, McCoy TM, Hu Y, Wilkinson BL (2018) Physicochemical and biological characterisation of azobenzene-containing photoswitchable surfactants. Bull Chem Soc Jpn 91:932–939CrossRef
70.
Zurück zum Zitat Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542–1550PubMedCrossRef Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542–1550PubMedCrossRef
71.
Zurück zum Zitat Wang L, Li Q (2018) Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev 47:1044–1097PubMedCrossRef Wang L, Li Q (2018) Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev 47:1044–1097PubMedCrossRef
72.
Zurück zum Zitat Wang C, Chen Q, Xu H et al (2010) Photoresponsive supramolecular amphiphiles for controlled self-assembly of nanofibers and vesicles. Adv Mater 22:2553–2555PubMedCrossRef Wang C, Chen Q, Xu H et al (2010) Photoresponsive supramolecular amphiphiles for controlled self-assembly of nanofibers and vesicles. Adv Mater 22:2553–2555PubMedCrossRef
73.
Zurück zum Zitat Carswell ADW, O’Rear EA, Grady BP (2003) Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: from spheres to wires to flat films. J Am Chem Soc 125:14793–14800PubMedCrossRef Carswell ADW, O’Rear EA, Grady BP (2003) Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: from spheres to wires to flat films. J Am Chem Soc 125:14793–14800PubMedCrossRef
74.
Zurück zum Zitat Yagai S, Kitamura A (2008) Recent advances in photoresponsive supramolecular self-assemblies. Chem Soc Rev 37:1520–1529PubMedCrossRef Yagai S, Kitamura A (2008) Recent advances in photoresponsive supramolecular self-assemblies. Chem Soc Rev 37:1520–1529PubMedCrossRef
75.
76.
Zurück zum Zitat Lsraelachvili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225CrossRef Lsraelachvili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225CrossRef
77.
Zurück zum Zitat Myers D (2006) Surfactant science and technology. Wiley, Hoboken Myers D (2006) Surfactant science and technology. Wiley, Hoboken
78.
Zurück zum Zitat Milton R (1989) Surfactants and interfacial phenomena. Wiley, Hoboken Milton R (1989) Surfactants and interfacial phenomena. Wiley, Hoboken
79.
Zurück zum Zitat Kunitake T (1992) Synthetic bilayer membranes: molecular design, self-organization, and application. Angew Chem Int Ed Engl 31:709–726CrossRef Kunitake T (1992) Synthetic bilayer membranes: molecular design, self-organization, and application. Angew Chem Int Ed Engl 31:709–726CrossRef
80.
Zurück zum Zitat Monger FM, Littau CA (1991) Gemini surfactants; synthesis and properties. J Am Chem Soc 113:1451–1452CrossRef Monger FM, Littau CA (1991) Gemini surfactants; synthesis and properties. J Am Chem Soc 113:1451–1452CrossRef
82.
Zurück zum Zitat Meister A, Bastrop M, Koschoreck S et al (2007) Structure-property relationship in stimulus-responsive bolaamphiphile hydrogels. Langmuir 23:7715–7723PubMedCrossRef Meister A, Bastrop M, Koschoreck S et al (2007) Structure-property relationship in stimulus-responsive bolaamphiphile hydrogels. Langmuir 23:7715–7723PubMedCrossRef
83.
Zurück zum Zitat Goulet-Hanssens A, Eisenreich F, Hecht S (2020) Enlightening materials with photoswitches. Adv Mater 32:1905966CrossRef Goulet-Hanssens A, Eisenreich F, Hecht S (2020) Enlightening materials with photoswitches. Adv Mater 32:1905966CrossRef
84.
Zurück zum Zitat Yagai S, Karatsu T, Kitamura A (2005) Photocontrollable self-assembly. Chem A Eur J 11:4054–4063CrossRef Yagai S, Karatsu T, Kitamura A (2005) Photocontrollable self-assembly. Chem A Eur J 11:4054–4063CrossRef
85.
Zurück zum Zitat Velázquez MM, Alejo T, López-Díaz D et al (2016) Langmuir–Blodgett methodology: a versatile technique to build 2D material films. In: Two-dimensional materials: synthesis, characterization and potential applications. InTech, pp 21–42 Velázquez MM, Alejo T, López-Díaz D et al (2016) Langmuir–Blodgett methodology: a versatile technique to build 2D material films. In: Two-dimensional materials: synthesis, characterization and potential applications. InTech, pp 21–42
86.
Zurück zum Zitat Rogalska E, Bilewicz R, Brigaud T et al (2000) Formation and properties of Langmuir and Gibbs monolayers: a comparative study using hydrogenated and partially fluorinated amphiphilic derivatives of mannitol. Chem Phys Lipids 105:71–91PubMedCrossRef Rogalska E, Bilewicz R, Brigaud T et al (2000) Formation and properties of Langmuir and Gibbs monolayers: a comparative study using hydrogenated and partially fluorinated amphiphilic derivatives of mannitol. Chem Phys Lipids 105:71–91PubMedCrossRef
87.
Zurück zum Zitat Ariga K, Yamauchi Y, Mori T, Hill JP (2013) 25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv Mater 25:6477–6512PubMedCrossRef Ariga K, Yamauchi Y, Mori T, Hill JP (2013) 25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv Mater 25:6477–6512PubMedCrossRef
88.
Zurück zum Zitat Holden DA, Ringsdorf H, Deblauwe V, Smets G (1984) Photosensitive monolayers. Studies of surface-active spiropyrans at the air-water interface. J Phys Chem 88:716–720CrossRef Holden DA, Ringsdorf H, Deblauwe V, Smets G (1984) Photosensitive monolayers. Studies of surface-active spiropyrans at the air-water interface. J Phys Chem 88:716–720CrossRef
89.
Zurück zum Zitat Rossos AK, Katsiaflaka M, Cai J et al (2018) Photochromism of amphiphilic dithienylethenes as Langmuir-Schaefer films. Langmuir 34:10905–10912PubMedCrossRef Rossos AK, Katsiaflaka M, Cai J et al (2018) Photochromism of amphiphilic dithienylethenes as Langmuir-Schaefer films. Langmuir 34:10905–10912PubMedCrossRef
90.
Zurück zum Zitat Gong HF, Tang JA, Wang CM et al (2003) In situ observation of the photochromism in the Langmuir monolayer of a non-typical amphiphilic spiropyran derivative at the air/water interface. Chinese J Chem 21:387–391 Gong HF, Tang JA, Wang CM et al (2003) In situ observation of the photochromism in the Langmuir monolayer of a non-typical amphiphilic spiropyran derivative at the air/water interface. Chinese J Chem 21:387–391
91.
Zurück zum Zitat Yamaguchi T, Kajikawa K, Takezoe H, Fukuda A (1992) Observation of photochromic reactions in spiropyran monolayers by surface potential measurement. Jpn J Appl Phys 31:1160–1163CrossRef Yamaguchi T, Kajikawa K, Takezoe H, Fukuda A (1992) Observation of photochromic reactions in spiropyran monolayers by surface potential measurement. Jpn J Appl Phys 31:1160–1163CrossRef
92.
Zurück zum Zitat Miyata A, Unuma Y, Higashigaki Y (1993) Optical properties and molecular orientation of aggregates in Langmuir-Blodgett films of A long-chain spiropyran. Bull Chem Soc Jpn 66:993–998CrossRef Miyata A, Unuma Y, Higashigaki Y (1993) Optical properties and molecular orientation of aggregates in Langmuir-Blodgett films of A long-chain spiropyran. Bull Chem Soc Jpn 66:993–998CrossRef
93.
Zurück zum Zitat Tachibana H, Yamanaka Y, Matsumoto M (2002) Surface and photochemical properties of Langmuir monolayer and Langmuir-Blodgett films of a spiropyran derivative. J Mater Chem 12:938–942CrossRef Tachibana H, Yamanaka Y, Matsumoto M (2002) Surface and photochemical properties of Langmuir monolayer and Langmuir-Blodgett films of a spiropyran derivative. J Mater Chem 12:938–942CrossRef
94.
Zurück zum Zitat Bubeck C (1988) Reactions in monolayers and Langmuir-Blodgett films. Elsevier Sequoia, The NetherlandsCrossRef Bubeck C (1988) Reactions in monolayers and Langmuir-Blodgett films. Elsevier Sequoia, The NetherlandsCrossRef
95.
Zurück zum Zitat Ando E, Moriyama K, Arita K, Morimoto K (1990) Photochromic behaviors of long alkyl chain spiropyrans at the air-water interface and in LB films. Langmuir 6:1451–1454CrossRef Ando E, Moriyama K, Arita K, Morimoto K (1990) Photochromic behaviors of long alkyl chain spiropyrans at the air-water interface and in LB films. Langmuir 6:1451–1454CrossRef
96.
Zurück zum Zitat Miyata A, Unuma Y, Higashigali Y (1991) Aggregates in Langmuir-Bladgett films of spiropyrans having hydroxyl or hydroxymethyl group. Bull Chem Soc Jpn 64:1719–1725CrossRef Miyata A, Unuma Y, Higashigali Y (1991) Aggregates in Langmuir-Bladgett films of spiropyrans having hydroxyl or hydroxymethyl group. Bull Chem Soc Jpn 64:1719–1725CrossRef
97.
Zurück zum Zitat Whitten DG (1993) Photochemistry and photophysics of trans-stilbene and related alkenes in surfactant assemblies. Acc Chem Res 26:502–509CrossRef Whitten DG (1993) Photochemistry and photophysics of trans-stilbene and related alkenes in surfactant assemblies. Acc Chem Res 26:502–509CrossRef
98.
Zurück zum Zitat Cheng J, Štacko P, Rudolf P et al (2017) Bidirectional photomodulation of surface tension in Langmuir films. Angew Chem Int Ed 56:291–296CrossRef Cheng J, Štacko P, Rudolf P et al (2017) Bidirectional photomodulation of surface tension in Langmuir films. Angew Chem Int Ed 56:291–296CrossRef
99.
Zurück zum Zitat Backus EHG, Kuiper JM, Engberts JBFN et al (2011) Reversible optical control of monolayers on water through photoswitchable lipids. J Phys Chem B 115:2294–2302PubMedCrossRef Backus EHG, Kuiper JM, Engberts JBFN et al (2011) Reversible optical control of monolayers on water through photoswitchable lipids. J Phys Chem B 115:2294–2302PubMedCrossRef
100.
Zurück zum Zitat Yamamoto T, Umemura Y, Sato O, Einaga Y (2004) Photoswitchable magnetic films: Prussian blue intercalated in Langmuir-Blodgett films consisting of an amphiphilic azobenzene and a clay mineral. Chem Mater 16:1195–1201CrossRef Yamamoto T, Umemura Y, Sato O, Einaga Y (2004) Photoswitchable magnetic films: Prussian blue intercalated in Langmuir-Blodgett films consisting of an amphiphilic azobenzene and a clay mineral. Chem Mater 16:1195–1201CrossRef
101.
Zurück zum Zitat Nakazawa T, Azumi R, Sakai H et al (2004) Brewster angle microscopic observations of the Langmuir films of amphiphilic spiropyran during compression and under UV illumination. Langmuir 20:5439–5444PubMedCrossRef Nakazawa T, Azumi R, Sakai H et al (2004) Brewster angle microscopic observations of the Langmuir films of amphiphilic spiropyran during compression and under UV illumination. Langmuir 20:5439–5444PubMedCrossRef
102.
Zurück zum Zitat Kim I, Rabolt JF, Stroeve P (2000) Dynamic monolayer behavior of a photo-responsive azobenzene surfactant. Colloids Surf A Physicochem Eng Asp 171:167–174CrossRef Kim I, Rabolt JF, Stroeve P (2000) Dynamic monolayer behavior of a photo-responsive azobenzene surfactant. Colloids Surf A Physicochem Eng Asp 171:167–174CrossRef
103.
Zurück zum Zitat Karthaus O, Shimomura M, Hioki M et al (1996) Reversible photomorphism in surface monolayers. J Am Chem Soc 118:9174–9175CrossRef Karthaus O, Shimomura M, Hioki M et al (1996) Reversible photomorphism in surface monolayers. J Am Chem Soc 118:9174–9175CrossRef
104.
Zurück zum Zitat Song B, Zhao J (2010) Orientation of the azobenzene spacer of carboxylic methyl ester gemini surfactants in Langmuir monolayer. Chinese J Chem 28:189–192CrossRef Song B, Zhao J (2010) Orientation of the azobenzene spacer of carboxylic methyl ester gemini surfactants in Langmuir monolayer. Chinese J Chem 28:189–192CrossRef
105.
Zurück zum Zitat Kharlamov AA, Lyubimov AV, Vinogradov AM (1994) The photoinduced surface pressure relaxation processes in amphiphilic spiropyrane and spiroindolinonaphthooxazine. Thin Solid Films 244:962–965CrossRef Kharlamov AA, Lyubimov AV, Vinogradov AM (1994) The photoinduced surface pressure relaxation processes in amphiphilic spiropyrane and spiroindolinonaphthooxazine. Thin Solid Films 244:962–965CrossRef
106.
Zurück zum Zitat Sakai K, Imaizumi Y, Oguchi T et al (2010) Adsorption characteristics of spiropyran-modified cationic surfactants at the silica/aqueous solution interface. Langmuir 26:9283–9288PubMedCrossRef Sakai K, Imaizumi Y, Oguchi T et al (2010) Adsorption characteristics of spiropyran-modified cationic surfactants at the silica/aqueous solution interface. Langmuir 26:9283–9288PubMedCrossRef
107.
Zurück zum Zitat Eastoe J, Dominguez MS, Wyatt P et al (2002) Properties of a stilbene-containing gemini photosurfactant: Light-triggered changes in surface tension and aggregation. Langmuir 18:7837–7844CrossRef Eastoe J, Dominguez MS, Wyatt P et al (2002) Properties of a stilbene-containing gemini photosurfactant: Light-triggered changes in surface tension and aggregation. Langmuir 18:7837–7844CrossRef
108.
Zurück zum Zitat Kang HC, Lee BM, Yoon J, Yoon M (2000) Synthesis and surface-active properties of new photosensitive surfactants containing the azobenzene group. J Colloid Interface Sci 231:255–264PubMedCrossRef Kang HC, Lee BM, Yoon J, Yoon M (2000) Synthesis and surface-active properties of new photosensitive surfactants containing the azobenzene group. J Colloid Interface Sci 231:255–264PubMedCrossRef
109.
Zurück zum Zitat Dunkin IR, Gittinger A, Sherrington DC, Whittaker P (1996) Synthesis, characterization and applications of azo-containing photodestructible surfactants. J Chem Soc Perkin Trans 2:1837–1842CrossRef Dunkin IR, Gittinger A, Sherrington DC, Whittaker P (1996) Synthesis, characterization and applications of azo-containing photodestructible surfactants. J Chem Soc Perkin Trans 2:1837–1842CrossRef
110.
Zurück zum Zitat Yang L, Takisawa N, Hayashita T, Shirahama K (1995) Colloid chemical characterization of the photosurfactant 4-ethylazobenzene 4′-(oxyethyl)trimethylammonium bromide. J Phys Chem 99:8799–8803CrossRef Yang L, Takisawa N, Hayashita T, Shirahama K (1995) Colloid chemical characterization of the photosurfactant 4-ethylazobenzene 4′-(oxyethyl)trimethylammonium bromide. J Phys Chem 99:8799–8803CrossRef
111.
Zurück zum Zitat Hayashita T, Kurosawa T, Miyata T et al (1994) Effect of structural variation within cationic azo-surfactant upon photoresponsive function in aqueous solution. Colloid Polym Sci 272:1611–1619CrossRef Hayashita T, Kurosawa T, Miyata T et al (1994) Effect of structural variation within cationic azo-surfactant upon photoresponsive function in aqueous solution. Colloid Polym Sci 272:1611–1619CrossRef
112.
Zurück zum Zitat Dunkin IR, Gittinger A, Sherrington DC, Whittaker P (1994) A photodestructible surfactant. J Chem Soc Chem Commun 2245–2246 Dunkin IR, Gittinger A, Sherrington DC, Whittaker P (1994) A photodestructible surfactant. J Chem Soc Chem Commun 2245–2246
113.
Zurück zum Zitat Drummond CJ, Albers S, Furlong DN, Wells D (1991) Photocontrol of surface activity and self-assembly with a spirobenzopyran surfactant. Langmuir 7:2409–2411CrossRef Drummond CJ, Albers S, Furlong DN, Wells D (1991) Photocontrol of surface activity and self-assembly with a spirobenzopyran surfactant. Langmuir 7:2409–2411CrossRef
114.
Zurück zum Zitat Shinkai S, Matsuo K, Harada A, Manabe O (1982) Photocontrol of micellar catalyses. J Chem Soc Perkin Trans 1:1261–1265CrossRef Shinkai S, Matsuo K, Harada A, Manabe O (1982) Photocontrol of micellar catalyses. J Chem Soc Perkin Trans 1:1261–1265CrossRef
115.
Zurück zum Zitat Shin JY, Abbott NL (1999) Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants. Langmuir 15:4404–4410CrossRef Shin JY, Abbott NL (1999) Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants. Langmuir 15:4404–4410CrossRef
116.
Zurück zum Zitat Cicciarelli BA, Hatton TA, Smith KA (2007) Dynamic surface tension behavior in a photoresponsive surfactant system. Langmuir 23:4753–4764PubMedCrossRef Cicciarelli BA, Hatton TA, Smith KA (2007) Dynamic surface tension behavior in a photoresponsive surfactant system. Langmuir 23:4753–4764PubMedCrossRef
117.
Zurück zum Zitat Chevallier E, Mamane A, Stone HA et al (2011) Pumping-out photo-surfactants from an air-water interface using light. Soft Matter 7:7866–7874CrossRef Chevallier E, Mamane A, Stone HA et al (2011) Pumping-out photo-surfactants from an air-water interface using light. Soft Matter 7:7866–7874CrossRef
118.
Zurück zum Zitat Chevallier E, Monteux C, Lequeux F, Tribet C (2012) Photofoams: remote control of foam destabilization by exposure to light using an azobenzene surfactant. Langmuir 28:2308–2312PubMedCrossRef Chevallier E, Monteux C, Lequeux F, Tribet C (2012) Photofoams: remote control of foam destabilization by exposure to light using an azobenzene surfactant. Langmuir 28:2308–2312PubMedCrossRef
119.
Zurück zum Zitat Chevallier E, Saint-Jalmes A, Cantat I et al (2013) Light induced flows opposing drainage in foams and thin-films using photosurfactants. Soft Matter 9:7054–7060CrossRef Chevallier E, Saint-Jalmes A, Cantat I et al (2013) Light induced flows opposing drainage in foams and thin-films using photosurfactants. Soft Matter 9:7054–7060CrossRef
120.
Zurück zum Zitat Mamane A, Chevallier E, Olanier L et al (2017) Optical control of surface forces and instabilities in foam films using photosurfactants. Soft Matter 13:1299–1305PubMedCrossRef Mamane A, Chevallier E, Olanier L et al (2017) Optical control of surface forces and instabilities in foam films using photosurfactants. Soft Matter 13:1299–1305PubMedCrossRef
121.
Zurück zum Zitat Jiang J, Ma Y, Cui Z (2017) Smart foams based on dual stimuli-responsive surfactant. Colloids Surf A Physicochem Eng Asp 513:287–291CrossRef Jiang J, Ma Y, Cui Z (2017) Smart foams based on dual stimuli-responsive surfactant. Colloids Surf A Physicochem Eng Asp 513:287–291CrossRef
122.
Zurück zum Zitat Lei L, Xie D, Song B et al (2017) Photoresponsive foams generated by a rigid surfactant derived from dehydroabietic acid. Langmuir 33:7908–7916PubMedCrossRef Lei L, Xie D, Song B et al (2017) Photoresponsive foams generated by a rigid surfactant derived from dehydroabietic acid. Langmuir 33:7908–7916PubMedCrossRef
123.
Zurück zum Zitat Chen S, Wang C, Yin Y, Chen K (2016) Synthesis of photo-responsive azobenzene molecules with different hydrophobic chain length for controlling foam stability. RSC Adv 6:60138–60144CrossRef Chen S, Wang C, Yin Y, Chen K (2016) Synthesis of photo-responsive azobenzene molecules with different hydrophobic chain length for controlling foam stability. RSC Adv 6:60138–60144CrossRef
124.
Zurück zum Zitat Chen S, Zhang W, Wang C, Sun S (2016) A recycled foam coloring approach based on the reversible photo-isomerization of an azobenzene cationic surfactant. Green Chem 18:3972–3980CrossRef Chen S, Zhang W, Wang C, Sun S (2016) A recycled foam coloring approach based on the reversible photo-isomerization of an azobenzene cationic surfactant. Green Chem 18:3972–3980CrossRef
125.
Zurück zum Zitat Chen S, Zhang Y, Chen K et al (2017) Insight into a fast-phototuning azobenzene switch for sustainably tailoring the foam stability. ASC Appl Mater Interfaces 9:13778–13784CrossRef Chen S, Zhang Y, Chen K et al (2017) Insight into a fast-phototuning azobenzene switch for sustainably tailoring the foam stability. ASC Appl Mater Interfaces 9:13778–13784CrossRef
126.
Zurück zum Zitat Fei L, Ge F, Yin Y, Wang C (2019) Photo-responsive foam control base on nonionic azobenzene surfactant as stabilizer. Colloids Surf A Physicochem Eng Asp 560:366–375CrossRef Fei L, Ge F, Yin Y, Wang C (2019) Photo-responsive foam control base on nonionic azobenzene surfactant as stabilizer. Colloids Surf A Physicochem Eng Asp 560:366–375CrossRef
127.
Zurück zum Zitat Chen S, Fei L, Ge F, Wang C (2019) Photoresponsive aqueous foams with controllable stability from nonionic azobenzene surfactants in multiple-component systems. Soft Matter 15:8313–8319PubMedCrossRef Chen S, Fei L, Ge F, Wang C (2019) Photoresponsive aqueous foams with controllable stability from nonionic azobenzene surfactants in multiple-component systems. Soft Matter 15:8313–8319PubMedCrossRef
128.
Zurück zum Zitat Chen S, Fei L, Ge F et al (2020) A versatile and recycled pigment foam coloring approach for natural and synthetic fibers with nearly-zero pollutant discharge. J Clean Prod 243:118504 Chen S, Fei L, Ge F et al (2020) A versatile and recycled pigment foam coloring approach for natural and synthetic fibers with nearly-zero pollutant discharge. J Clean Prod 243:118504
129.
Zurück zum Zitat Jiang X, Guo Q, Li H et al (2017) Photofoams and flotation mechanism of an azobenzene-based surfactant on quartz. Colloids Surf A Physicochem Eng Asp 535:201–205CrossRef Jiang X, Guo Q, Li H et al (2017) Photofoams and flotation mechanism of an azobenzene-based surfactant on quartz. Colloids Surf A Physicochem Eng Asp 535:201–205CrossRef
130.
Zurück zum Zitat Jiang X, Guo Q, He Y et al (2018) Using light to control the floatability of solid particles in aqueous solution of a Gemini surfactant. Colloids Surf A Physicochem Eng Asp 553:218–224CrossRef Jiang X, Guo Q, He Y et al (2018) Using light to control the floatability of solid particles in aqueous solution of a Gemini surfactant. Colloids Surf A Physicochem Eng Asp 553:218–224CrossRef
131.
Zurück zum Zitat Varanakkottu SN, Anyfantakis M, Morel M et al (2016) Light-directed particle patterning by evaporative optical Marangoni assembly. Nano Lett 16:644–650PubMedCrossRef Varanakkottu SN, Anyfantakis M, Morel M et al (2016) Light-directed particle patterning by evaporative optical Marangoni assembly. Nano Lett 16:644–650PubMedCrossRef
132.
Zurück zum Zitat Lv C, Varanakkottu SN, Baier T, Hardt S (2018) Controlling the trajectories of nano/micro particles using light-actuated marangoni flow. Nano Lett 18:6924–6930PubMedCrossRef Lv C, Varanakkottu SN, Baier T, Hardt S (2018) Controlling the trajectories of nano/micro particles using light-actuated marangoni flow. Nano Lett 18:6924–6930PubMedCrossRef
133.
Zurück zum Zitat Diguet A, Guillermic RM, Magome N et al (2009) Photomanipulation of a droplet by the chromocapillary effect. Angew Chem Int Ed 48:9281–9284CrossRef Diguet A, Guillermic RM, Magome N et al (2009) Photomanipulation of a droplet by the chromocapillary effect. Angew Chem Int Ed 48:9281–9284CrossRef
134.
Zurück zum Zitat Baigl D (2012) Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. Lab Chip 12:3637–3653PubMedCrossRef Baigl D (2012) Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. Lab Chip 12:3637–3653PubMedCrossRef
135.
Zurück zum Zitat Kavokine N, Anyfantakis M, Morel M et al (2016) Light-driven transport of a liquid marble with and against surface flows. Angew Chem Int Ed 55:11183–11187CrossRef Kavokine N, Anyfantakis M, Morel M et al (2016) Light-driven transport of a liquid marble with and against surface flows. Angew Chem Int Ed 55:11183–11187CrossRef
136.
Zurück zum Zitat Vialetto J, Anyfantakis M, Rudiuk S et al (2019) Photoswitchable dissipative two-dimensional colloidal crystals. Angew Chem Int Ed 58:9145–9149CrossRef Vialetto J, Anyfantakis M, Rudiuk S et al (2019) Photoswitchable dissipative two-dimensional colloidal crystals. Angew Chem Int Ed 58:9145–9149CrossRef
137.
Zurück zum Zitat Schnurbus M, Stricker L, Ravoo BJ, Braunschweig B (2018) Smart air-water interfaces with arylazopyrazole surfactants and their role in photoresponsive aqueous foam. Langmuir 34:6028–6035PubMedPubMedCentralCrossRef Schnurbus M, Stricker L, Ravoo BJ, Braunschweig B (2018) Smart air-water interfaces with arylazopyrazole surfactants and their role in photoresponsive aqueous foam. Langmuir 34:6028–6035PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Honnigfort C, Campbell RA, Droste J et al (2020) Unexpected monolayer-to-bilayer transition of arylazopyrazole surfactants facilitates superior photo-control of fluid interfaces and colloids. Chem Sci 11:2085–2092PubMedPubMedCentralCrossRef Honnigfort C, Campbell RA, Droste J et al (2020) Unexpected monolayer-to-bilayer transition of arylazopyrazole surfactants facilitates superior photo-control of fluid interfaces and colloids. Chem Sci 11:2085–2092PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Sakai H, Ebana H, Sakai K et al (2007) Photo-isomerization of spiropyran-modified cationic surfactants. J Colloid Interface Sci 316:1027–1030PubMedCrossRef Sakai H, Ebana H, Sakai K et al (2007) Photo-isomerization of spiropyran-modified cationic surfactants. J Colloid Interface Sci 316:1027–1030PubMedCrossRef
140.
Zurück zum Zitat Moo JGS, Presolski S, Pumera M (2016) Photochromic spatiotemporal control of bubble-propelled micromotors by a spiropyran molecular switch. ACS Nano 10:3543–3552PubMedCrossRef Moo JGS, Presolski S, Pumera M (2016) Photochromic spatiotemporal control of bubble-propelled micromotors by a spiropyran molecular switch. ACS Nano 10:3543–3552PubMedCrossRef
141.
Zurück zum Zitat Schnurbus M, Kabat M, Jarek E et al (2020) Spiropyran sulfonates for photo- and pH-responsive air-water interfaces and aqueous foam. Langmuir 36:6871–6879PubMedCrossRef Schnurbus M, Kabat M, Jarek E et al (2020) Spiropyran sulfonates for photo- and pH-responsive air-water interfaces and aqueous foam. Langmuir 36:6871–6879PubMedCrossRef
142.
Zurück zum Zitat Zhmud BV, Tiberg F, Kizling J (2000) Dynamic surface tension in concentrated solutions of CnEm surfactants: a comparison between the theory and experiment. Langmuir 16:2557–2565CrossRef Zhmud BV, Tiberg F, Kizling J (2000) Dynamic surface tension in concentrated solutions of CnEm surfactants: a comparison between the theory and experiment. Langmuir 16:2557–2565CrossRef
143.
Zurück zum Zitat Beneventi D, Carre B, Gandini A (2001) Role of surfactant structure on surface and foaming properties. Colloids Surf A Physicochem Eng Asp 189:65–73CrossRef Beneventi D, Carre B, Gandini A (2001) Role of surfactant structure on surface and foaming properties. Colloids Surf A Physicochem Eng Asp 189:65–73CrossRef
144.
Zurück zum Zitat Chen S, Chen S, Leung FKC et al (2020) Dynamic assemblies of molecular motor amphiphiles control macroscopic foam properties. J Am Chem Soc 142:10163–10172PubMedPubMedCentralCrossRef Chen S, Chen S, Leung FKC et al (2020) Dynamic assemblies of molecular motor amphiphiles control macroscopic foam properties. J Am Chem Soc 142:10163–10172PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Nagarajan R (2002) The neglected role of the surfactant tail self-assembly: the neglected role of the surfactant tail. Langmuir 18:31–38CrossRef Nagarajan R (2002) The neglected role of the surfactant tail self-assembly: the neglected role of the surfactant tail. Langmuir 18:31–38CrossRef
146.
Zurück zum Zitat Li J, Zhao M, Zhou H et al (2012) Photo-induced transformation of wormlike micelles to spherical micelles in aqueous solution. Soft Matter 8:7858–7864CrossRef Li J, Zhao M, Zhou H et al (2012) Photo-induced transformation of wormlike micelles to spherical micelles in aqueous solution. Soft Matter 8:7858–7864CrossRef
147.
Zurück zum Zitat Wang D, Wei G, Dong R, Hao J (2013) Multiresponsive viscoelastic vesicle gels of nonionic C12EO4 and anionic AzoNa. Chem A Eur J 19:8253–8260CrossRef Wang D, Wei G, Dong R, Hao J (2013) Multiresponsive viscoelastic vesicle gels of nonionic C12EO4 and anionic AzoNa. Chem A Eur J 19:8253–8260CrossRef
148.
Zurück zum Zitat Tabor RF, Tan DD, Han SS et al (2014) Reversible pH- and photocontrollable carbohydrate-based surfactants. Chem A Eur J 20:13881–13884CrossRef Tabor RF, Tan DD, Han SS et al (2014) Reversible pH- and photocontrollable carbohydrate-based surfactants. Chem A Eur J 20:13881–13884CrossRef
149.
Zurück zum Zitat Tu Y, Chen Q, Shang Y et al (2019) Photoresponsive behavior of wormlike micelles constructed by Gemini surfactant 12-3-12·2Br– and different cinnamate derivatives. Langmuir 35:4634–4645PubMedCrossRef Tu Y, Chen Q, Shang Y et al (2019) Photoresponsive behavior of wormlike micelles constructed by Gemini surfactant 12-3-12·2Br– and different cinnamate derivatives. Langmuir 35:4634–4645PubMedCrossRef
150.
Zurück zum Zitat Fameau AL, Arnould A, Lehmann M, Von Klitzing R (2015) Photoresponsive self-assemblies based on fatty acids. Chem Commun 51:2907–2910CrossRef Fameau AL, Arnould A, Lehmann M, Von Klitzing R (2015) Photoresponsive self-assemblies based on fatty acids. Chem Commun 51:2907–2910CrossRef
151.
Zurück zum Zitat Jia K, Hu J, Dong J, Li X (2016) Light-responsive multillamellar vesicles in coumaric acid/alkyldimethylamine oxide binary systems: effects of surfactant and hydrotrope structures. J Colloid Interface Sci 477:156–165PubMedCrossRef Jia K, Hu J, Dong J, Li X (2016) Light-responsive multillamellar vesicles in coumaric acid/alkyldimethylamine oxide binary systems: effects of surfactant and hydrotrope structures. J Colloid Interface Sci 477:156–165PubMedCrossRef
152.
Zurück zum Zitat Blayo C, Houston JE, King SM, Evans RC (2018) Unlocking structure-self-assembly relationships in cationic azobenzene photosurfactants. Langmuir 34:10123–10134PubMedCrossRef Blayo C, Houston JE, King SM, Evans RC (2018) Unlocking structure-self-assembly relationships in cationic azobenzene photosurfactants. Langmuir 34:10123–10134PubMedCrossRef
153.
Zurück zum Zitat Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105:1401–1443PubMedCrossRef Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105:1401–1443PubMedCrossRef
154.
Zurück zum Zitat Chen S, Costil R, Leung FKC, Feringa BL (2021) Self-assembly of photoresponsive molecular amphiphiles in aqueous media. Angew Chem Int Ed 60:11604–11627CrossRef Chen S, Costil R, Leung FKC, Feringa BL (2021) Self-assembly of photoresponsive molecular amphiphiles in aqueous media. Angew Chem Int Ed 60:11604–11627CrossRef
155.
Zurück zum Zitat De JJJD, Lucas LN, Kellogg RM (2004) Supramolecular chirality into molecular chirality. Science 304:278–281CrossRef De JJJD, Lucas LN, Kellogg RM (2004) Supramolecular chirality into molecular chirality. Science 304:278–281CrossRef
156.
Zurück zum Zitat Eelkema R, Feringa BL (2006) Amplification of chirality in liquid crystals. Org Biomol Chem 4:3729–3745PubMedCrossRef Eelkema R, Feringa BL (2006) Amplification of chirality in liquid crystals. Org Biomol Chem 4:3729–3745PubMedCrossRef
157.
Zurück zum Zitat de Jong JJD, van Rijn P, Tiemersma-Wegeman TD et al (2008) Dynamic chirality, chirality transfer and aggregation behaviour of dithienylethene switches. Tetrahedron 64:8324–8335CrossRef de Jong JJD, van Rijn P, Tiemersma-Wegeman TD et al (2008) Dynamic chirality, chirality transfer and aggregation behaviour of dithienylethene switches. Tetrahedron 64:8324–8335CrossRef
158.
Zurück zum Zitat Katsonis N, Lacaze E, Feringa BL (2008) Molecular chirality at fluid/solid interfaces: expression of asymmetry in self-organised monolayers. J Mater Chem 18:2065–2073CrossRef Katsonis N, Lacaze E, Feringa BL (2008) Molecular chirality at fluid/solid interfaces: expression of asymmetry in self-organised monolayers. J Mater Chem 18:2065–2073CrossRef
159.
Zurück zum Zitat Barclay TG, Constantopoulos K, Matisons J (2014) Nanotubes self-assembled from amphiphilic molecules via helical intermediates. Chem Rev 114:10217–10291PubMedCrossRef Barclay TG, Constantopoulos K, Matisons J (2014) Nanotubes self-assembled from amphiphilic molecules via helical intermediates. Chem Rev 114:10217–10291PubMedCrossRef
160.
Zurück zum Zitat Vandijken DJ, Beierle JM, Stuart MCA et al (2014) Autoamplification of molecular chirality through the induction of supramolecular chirality. Angew Chem Int Ed 53:5073–5077CrossRef Vandijken DJ, Beierle JM, Stuart MCA et al (2014) Autoamplification of molecular chirality through the induction of supramolecular chirality. Angew Chem Int Ed 53:5073–5077CrossRef
161.
Zurück zum Zitat Liu M, Zhang L, Wang T (2015) Supramolecular chirality in self-assembled systems. Chem Rev 115:7304–7397PubMedCrossRef Liu M, Zhang L, Wang T (2015) Supramolecular chirality in self-assembled systems. Chem Rev 115:7304–7397PubMedCrossRef
162.
Zurück zum Zitat Muraoka T, Cui H, Stupp SI (2008) Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers. J Am Chem Soc 130:2946–2947PubMedCrossRef Muraoka T, Cui H, Stupp SI (2008) Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers. J Am Chem Soc 130:2946–2947PubMedCrossRef
163.
Zurück zum Zitat Muraoka T, Koh CY, Cui H, Stupp SI (2009) Light-triggered bioactivity in three dimensions. Angew Chem Int Ed 48:5946–5949CrossRef Muraoka T, Koh CY, Cui H, Stupp SI (2009) Light-triggered bioactivity in three dimensions. Angew Chem Int Ed 48:5946–5949CrossRef
164.
Zurück zum Zitat Paramonov SE, Jun HW, Hartgerink JD (2006) Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128:7291–7298PubMedCrossRef Paramonov SE, Jun HW, Hartgerink JD (2006) Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128:7291–7298PubMedCrossRef
165.
Zurück zum Zitat Caroli G, Coleman AC, Beierle JM et al (2011) Light-induced disassembly of self-assembled vesicle-capped nanotubes observed in real time. Nat Nanotechnol 6:547–552PubMedCrossRef Caroli G, Coleman AC, Beierle JM et al (2011) Light-induced disassembly of self-assembled vesicle-capped nanotubes observed in real time. Nat Nanotechnol 6:547–552PubMedCrossRef
166.
Zurück zum Zitat Erne PM, Van Bezouwen LS, Štacko P et al (2015) Loading of vesicles into soft amphiphilic nanotubes using osmosis. Angew Chem Int Ed 54:15122–15127CrossRef Erne PM, Van Bezouwen LS, Štacko P et al (2015) Loading of vesicles into soft amphiphilic nanotubes using osmosis. Angew Chem Int Ed 54:15122–15127CrossRef
167.
Zurück zum Zitat Sun Y, Ji Y, Yu H et al (2016) Near-infrared light-sensitive liposomes for controlled release. RSC Adv 6:81245–81249CrossRef Sun Y, Ji Y, Yu H et al (2016) Near-infrared light-sensitive liposomes for controlled release. RSC Adv 6:81245–81249CrossRef
168.
Zurück zum Zitat Wang D, Hou X, Ma B et al (2017) UV and NIR dual-responsive self-assembly systems based on a novel coumarin derivative surfactant. Soft Matter 13:6700–6708PubMedCrossRef Wang D, Hou X, Ma B et al (2017) UV and NIR dual-responsive self-assembly systems based on a novel coumarin derivative surfactant. Soft Matter 13:6700–6708PubMedCrossRef
169.
Zurück zum Zitat Wang G, Engberts JBFN (1994) Induction of aggregate formation of cationic polysoaps and surfactants by low concentrations of additives in aqueous solution. Langmuir 10:2583–2587CrossRef Wang G, Engberts JBFN (1994) Induction of aggregate formation of cationic polysoaps and surfactants by low concentrations of additives in aqueous solution. Langmuir 10:2583–2587CrossRef
170.
Zurück zum Zitat Buwalda RT, Jonker JM, Engberts JBFN (1999) Aggregation of Azo dyes with cationic amphiphiles at low concentrations in aqueous solution. Langmuir 15:1083–1089CrossRef Buwalda RT, Jonker JM, Engberts JBFN (1999) Aggregation of Azo dyes with cationic amphiphiles at low concentrations in aqueous solution. Langmuir 15:1083–1089CrossRef
171.
Zurück zum Zitat Buwalda RT, Engberts JBFN (2001) Aggregation of dicationic surfactants with methyl orange in aqueous solution. Langmuir 17:1054–1059CrossRef Buwalda RT, Engberts JBFN (2001) Aggregation of dicationic surfactants with methyl orange in aqueous solution. Langmuir 17:1054–1059CrossRef
172.
Zurück zum Zitat Buwalda RT, Stuart MCA, Engberts JBFN (2002) Interactions of an azobenzene-functionalized anionic amphiphile with cationic amphiphiles in aqueous solution. Langmuir 18:6507–6512CrossRef Buwalda RT, Stuart MCA, Engberts JBFN (2002) Interactions of an azobenzene-functionalized anionic amphiphile with cationic amphiphiles in aqueous solution. Langmuir 18:6507–6512CrossRef
173.
Zurück zum Zitat Li LS, Jiang H, Messmore BW et al (2007) A torsional strain mechanism to tune pitch in supramolecular helices. Angew Chem Int Ed 46:5873–5876CrossRef Li LS, Jiang H, Messmore BW et al (2007) A torsional strain mechanism to tune pitch in supramolecular helices. Angew Chem Int Ed 46:5873–5876CrossRef
174.
Zurück zum Zitat Song X, Perlstein J, Whitten DG (1997) Supramolecular aggregates of azobenzene phospholipids and related compounds in bilayer assemblies and other microheterogeneous media: structure, properties, and photoreactivity. J Am Chem Soc 119:9144–9159CrossRef Song X, Perlstein J, Whitten DG (1997) Supramolecular aggregates of azobenzene phospholipids and related compounds in bilayer assemblies and other microheterogeneous media: structure, properties, and photoreactivity. J Am Chem Soc 119:9144–9159CrossRef
175.
Zurück zum Zitat Sakai H, Matsumura A, Yokoyama S et al (1999) Photochemical switching of vesicle formation using an azobenzene-modified surfactant. J Phys Chem B 103:10737–10740CrossRef Sakai H, Matsumura A, Yokoyama S et al (1999) Photochemical switching of vesicle formation using an azobenzene-modified surfactant. J Phys Chem B 103:10737–10740CrossRef
176.
Zurück zum Zitat Khairutdinov RF, Hurst JK (2004) Light-driven transmembrane ion transport by spiropyran-crown ether supramolecular assemblies. Langmuir 20:1781–1785CrossRef Khairutdinov RF, Hurst JK (2004) Light-driven transmembrane ion transport by spiropyran-crown ether supramolecular assemblies. Langmuir 20:1781–1785CrossRef
177.
Zurück zum Zitat Lee CT, Smith KA, Hatton TA (2004) Photoreversible viscosity changes and gelation in mixtures of hydrophobically modified polyelectrolytes and photosensitive surfactants. Macromolecules 37:5397–5405CrossRef Lee CT, Smith KA, Hatton TA (2004) Photoreversible viscosity changes and gelation in mixtures of hydrophobically modified polyelectrolytes and photosensitive surfactants. Macromolecules 37:5397–5405CrossRef
178.
Zurück zum Zitat Bonini M, Berti D, Di Meglio JM et al (2005) Surfactant aggregates hosting a photoresponsive amphiphile: Structure and photoinduced conformational changes. Soft Matter 1:444–454PubMedCrossRef Bonini M, Berti D, Di Meglio JM et al (2005) Surfactant aggregates hosting a photoresponsive amphiphile: Structure and photoinduced conformational changes. Soft Matter 1:444–454PubMedCrossRef
179.
Zurück zum Zitat Faure D, Gravier J, Labrot T et al (2005) Photoinduced morphism of gemini surfactant aggregates. Chem Commun 16:1167–1169CrossRef Faure D, Gravier J, Labrot T et al (2005) Photoinduced morphism of gemini surfactant aggregates. Chem Commun 16:1167–1169CrossRef
180.
Zurück zum Zitat Hubbard FP, Santonicola G, Kaler EW, Abbott NL (2005) Small-angle neutron scattering from mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene. Langmuir 21:6131–6136PubMedCrossRef Hubbard FP, Santonicola G, Kaler EW, Abbott NL (2005) Small-angle neutron scattering from mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene. Langmuir 21:6131–6136PubMedCrossRef
181.
Zurück zum Zitat Shang T, Smith KA, Hatton TA (2006) Self-assembly of a nonionic photoresponsive surfactant under varying irradiation conditions: a small-angle neutron scattering and cryo-TEM study. Langmuir 22:1436–1442PubMedCrossRef Shang T, Smith KA, Hatton TA (2006) Self-assembly of a nonionic photoresponsive surfactant under varying irradiation conditions: a small-angle neutron scattering and cryo-TEM study. Langmuir 22:1436–1442PubMedCrossRef
182.
Zurück zum Zitat Hubbard FP, Abbott NL (2007) Effect of light on self-assembly of aqueous mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene. Langmuir 23:4819–4829PubMedCrossRef Hubbard FP, Abbott NL (2007) Effect of light on self-assembly of aqueous mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene. Langmuir 23:4819–4829PubMedCrossRef
183.
Zurück zum Zitat Sakai H, Orihara Y, Kodashima H et al (2005) Photoinduced reversible change of fluid viscosity. J Am Chem Soc 127:13454–13455PubMedCrossRef Sakai H, Orihara Y, Kodashima H et al (2005) Photoinduced reversible change of fluid viscosity. J Am Chem Soc 127:13454–13455PubMedCrossRef
184.
Zurück zum Zitat Alvarez-Lorenzo C, Bromberg L, Concheiro A (2009) Light-sensitive intelligent drug delivery systems. Photochem Photobiol 85:848–860PubMedCrossRef Alvarez-Lorenzo C, Bromberg L, Concheiro A (2009) Light-sensitive intelligent drug delivery systems. Photochem Photobiol 85:848–860PubMedCrossRef
185.
Zurück zum Zitat Fomina N, Sankaranarayanan J, Almutairi A (2012) Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 64:1005–1020PubMedPubMedCentralCrossRef Fomina N, Sankaranarayanan J, Almutairi A (2012) Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 64:1005–1020PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Liu X, Yang B, Wang Y et al (2005) New nanoscale pulsatile drug delivery system shanghai institute of organic chemistry, Chinese academy applications in drug delivery and controlled release. This is because liposomes with diameters approximately of 100 nm can be delivered to tumor tissue. Chem Mater 17:2792–2795CrossRef Liu X, Yang B, Wang Y et al (2005) New nanoscale pulsatile drug delivery system shanghai institute of organic chemistry, Chinese academy applications in drug delivery and controlled release. This is because liposomes with diameters approximately of 100 nm can be delivered to tumor tissue. Chem Mater 17:2792–2795CrossRef
187.
Zurück zum Zitat Lin Y, Cheng X, Qiao Y et al (2010) Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch. Soft Matter 6:902–908CrossRef Lin Y, Cheng X, Qiao Y et al (2010) Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch. Soft Matter 6:902–908CrossRef
188.
Zurück zum Zitat Bi Y, Wei H, Hu Q et al (2015) Wormlike micelles with photoresponsive viscoelastic behavior formed by surface active ionic liquid/azobenzene derivative mixed solution. Langmuir 31:3789–3798PubMedCrossRef Bi Y, Wei H, Hu Q et al (2015) Wormlike micelles with photoresponsive viscoelastic behavior formed by surface active ionic liquid/azobenzene derivative mixed solution. Langmuir 31:3789–3798PubMedCrossRef
189.
Zurück zum Zitat Tabor RF, Pottage MJ, Garvey CJ, Wilkinson BL (2015) Light-induced structural evolution of photoswitchable carbohydrate-based surfactant micelles. Chem Commun 51:5509–5512CrossRef Tabor RF, Pottage MJ, Garvey CJ, Wilkinson BL (2015) Light-induced structural evolution of photoswitchable carbohydrate-based surfactant micelles. Chem Commun 51:5509–5512CrossRef
190.
Zurück zum Zitat Kelly EA, Houston JE, Evans RC (2019) Probing the dynamic self-assembly behaviour of photoswitchable wormlike micelles in real-time. Soft Matter 15:1253–1259PubMedCrossRef Kelly EA, Houston JE, Evans RC (2019) Probing the dynamic self-assembly behaviour of photoswitchable wormlike micelles in real-time. Soft Matter 15:1253–1259PubMedCrossRef
191.
Zurück zum Zitat Lund R, Brun G, Chevallier E et al (2016) Kinetics of photocontrollable micelles: light-induced self-assembly and disassembly of azobenzene-based surfactants revealed by TR-SAXS. Langmuir 32:2539–2548PubMedCrossRef Lund R, Brun G, Chevallier E et al (2016) Kinetics of photocontrollable micelles: light-induced self-assembly and disassembly of azobenzene-based surfactants revealed by TR-SAXS. Langmuir 32:2539–2548PubMedCrossRef
192.
Zurück zum Zitat Song B, Hu Y, Zhao J (2009) A single-component photo-responsive fluid based on a gemini surfactant with an azobenzene spacer. J Colloid Interface Sci 333:820–822PubMedCrossRef Song B, Hu Y, Zhao J (2009) A single-component photo-responsive fluid based on a gemini surfactant with an azobenzene spacer. J Colloid Interface Sci 333:820–822PubMedCrossRef
193.
Zurück zum Zitat Zhang D, Lu X, Li Y et al (2018) Dual stimuli-responsive wormlike micelles base on cationic azobenzene surfactant and sodium azophenol. Colloids Surf A Physicochem Eng Asp 543:155–162CrossRef Zhang D, Lu X, Li Y et al (2018) Dual stimuli-responsive wormlike micelles base on cationic azobenzene surfactant and sodium azophenol. Colloids Surf A Physicochem Eng Asp 543:155–162CrossRef
194.
Zurück zum Zitat Hirose T, Matsuda K, Irie M (2006) Self-assembly of photochromic diarylethenes with amphiphilic side chains: reversible thermal and photochemical control. J Org Chem 71:7499–7508PubMedCrossRef Hirose T, Matsuda K, Irie M (2006) Self-assembly of photochromic diarylethenes with amphiphilic side chains: reversible thermal and photochemical control. J Org Chem 71:7499–7508PubMedCrossRef
195.
Zurück zum Zitat Van Dijken DJ, Chen J, Stuart MCA et al (2016) Amphiphilic molecular motors for responsive aggregation in water. J Am Chem Soc 138:660–669PubMedCrossRef Van Dijken DJ, Chen J, Stuart MCA et al (2016) Amphiphilic molecular motors for responsive aggregation in water. J Am Chem Soc 138:660–669PubMedCrossRef
196.
Zurück zum Zitat Kwangmettatam S, Kudernac T (2018) Light-fuelled reversible expansion of spiropyran-based vesicles in water. Chem Commun 54:5311–5314CrossRef Kwangmettatam S, Kudernac T (2018) Light-fuelled reversible expansion of spiropyran-based vesicles in water. Chem Commun 54:5311–5314CrossRef
197.
Zurück zum Zitat Xu F, Pfeifer L, Stuart MCA et al (2020) Multi-modal control over the assembly of a molecular motor bola-amphiphile in water. Chem Commun 56:7451–7454CrossRef Xu F, Pfeifer L, Stuart MCA et al (2020) Multi-modal control over the assembly of a molecular motor bola-amphiphile in water. Chem Commun 56:7451–7454CrossRef
198.
Zurück zum Zitat Fuentes E, Gerth M, Berrocal JA et al (2020) An azobenzene-based single-component supramolecular polymer responsive to multiple stimuli in water. J Am Chem Soc 142:10069–10078PubMedPubMedCentralCrossRef Fuentes E, Gerth M, Berrocal JA et al (2020) An azobenzene-based single-component supramolecular polymer responsive to multiple stimuli in water. J Am Chem Soc 142:10069–10078PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Geng S, Wang Y, Wang L et al (2017) A light-responsive self-assembly formed by a cationic Azobenzene derivative and SDS as a drug delivery system. Sci Rep 7:1–13 Geng S, Wang Y, Wang L et al (2017) A light-responsive self-assembly formed by a cationic Azobenzene derivative and SDS as a drug delivery system. Sci Rep 7:1–13
200.
Zurück zum Zitat Simmons NS, Blout ER (1960) The structure of tobacco mosaic virus and its components: ultraviolet optical rotatory dispersion. Biophys J 1:55–62PubMedPubMedCentralCrossRef Simmons NS, Blout ER (1960) The structure of tobacco mosaic virus and its components: ultraviolet optical rotatory dispersion. Biophys J 1:55–62PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Iino T (1974) Assembly of Salmonella Flagellin in vitro and vivo. J Supramol Struct 2:372–384PubMedCrossRef Iino T (1974) Assembly of Salmonella Flagellin in vitro and vivo. J Supramol Struct 2:372–384PubMedCrossRef
202.
Zurück zum Zitat Prockop DJ, Fertala A (1998) The collagen fibril: the almost crystalline structure. J Struct Biol 122:111–118PubMedCrossRef Prockop DJ, Fertala A (1998) The collagen fibril: the almost crystalline structure. J Struct Biol 122:111–118PubMedCrossRef
203.
Zurück zum Zitat Tsai CJ, Ma B, Kumar S et al (2001) Protein folding: Binding of conformationally fluctuating building blocks via population selection. Crit Rev Biochem Mol Biol 36:399–433PubMedCrossRef Tsai CJ, Ma B, Kumar S et al (2001) Protein folding: Binding of conformationally fluctuating building blocks via population selection. Crit Rev Biochem Mol Biol 36:399–433PubMedCrossRef
205.
207.
Zurück zum Zitat Angeloni NL, Bond CW, Tang Y et al (2011) Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials 32:1091–1101PubMedCrossRef Angeloni NL, Bond CW, Tang Y et al (2011) Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials 32:1091–1101PubMedCrossRef
208.
Zurück zum Zitat McClendon MT, Stupp SI (2012) Tubular hydrogels of circumferentially aligned nanofibers to encapsulate and orient vascular cells. Biomaterials 33:5713–5722PubMedPubMedCentralCrossRef McClendon MT, Stupp SI (2012) Tubular hydrogels of circumferentially aligned nanofibers to encapsulate and orient vascular cells. Biomaterials 33:5713–5722PubMedPubMedCentralCrossRef
209.
210.
Zurück zum Zitat Li C, Iscen A, Sai H et al (2020) Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nat Mater 19:900–909PubMedCrossRef Li C, Iscen A, Sai H et al (2020) Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nat Mater 19:900–909PubMedCrossRef
211.
Zurück zum Zitat Sheng Y, Chen Q, Yao J et al (2015) Hierarchical assembly of a dual-responsive macroscopic insulated molecular wire bundle in a gradient system. Sci Rep 5:1–6CrossRef Sheng Y, Chen Q, Yao J et al (2015) Hierarchical assembly of a dual-responsive macroscopic insulated molecular wire bundle in a gradient system. Sci Rep 5:1–6CrossRef
212.
Zurück zum Zitat Chen J, Leung FKC, Stuart MCA et al (2018) Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem 10:132–138PubMedCrossRef Chen J, Leung FKC, Stuart MCA et al (2018) Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem 10:132–138PubMedCrossRef
213.
Zurück zum Zitat Leung FKC, van den Enk T, Kajitani T et al (2018) Supramolecular packing and macroscopic alignment controls actuation speed in macroscopic strings of molecular motor amphiphiles. J Am Chem Soc 140:17724–17733PubMedPubMedCentralCrossRef Leung FKC, van den Enk T, Kajitani T et al (2018) Supramolecular packing and macroscopic alignment controls actuation speed in macroscopic strings of molecular motor amphiphiles. J Am Chem Soc 140:17724–17733PubMedPubMedCentralCrossRef
214.
Zurück zum Zitat Leung FKC, Kajitani T, Stuart MCA et al (2019) Dual-controlled macroscopic motions in a supramolecular hierarchical assembly of motor amphiphiles. Angew Chem Int Ed 58:10985–10989CrossRef Leung FKC, Kajitani T, Stuart MCA et al (2019) Dual-controlled macroscopic motions in a supramolecular hierarchical assembly of motor amphiphiles. Angew Chem Int Ed 58:10985–10989CrossRef
215.
Zurück zum Zitat Li Q, Fuks G, Moulin E et al (2015) Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat Nanotechnol 10:161–165PubMedCrossRef Li Q, Fuks G, Moulin E et al (2015) Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat Nanotechnol 10:161–165PubMedCrossRef
216.
Zurück zum Zitat Foy JT, Li Q, Goujon A et al (2017) Dual-light control of nanomachines that integrate motor and modulator subunits. Nat Nanotechnol 12:540–545PubMedCrossRef Foy JT, Li Q, Goujon A et al (2017) Dual-light control of nanomachines that integrate motor and modulator subunits. Nat Nanotechnol 12:540–545PubMedCrossRef
217.
Zurück zum Zitat Goujon A, Mariani G, Lang T et al (2017) Controlled sol−gel transitions by actuating molecular machine based supramolecular polymers. J Am Chem Soc 139:4923–4928PubMedCrossRef Goujon A, Mariani G, Lang T et al (2017) Controlled sol−gel transitions by actuating molecular machine based supramolecular polymers. J Am Chem Soc 139:4923–4928PubMedCrossRef
Metadaten
Titel
Aqueous Supramolecular Assemblies of Photocontrolled Molecular Amphiphiles
verfasst von
Franco King-Chi Leung
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-00657-9_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.