Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2018

23.02.2018

Assessing Constitutive Models for Prediction of High-Temperature Flow Behavior with a Perspective of Alloy Development

verfasst von: Santosh Kumar, B. Aashranth, M. Arvinth Davinci, Dipti Samantaray, Utpal Borah, A. K. Bhaduri

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The utility of different constitutive models describing high-temperature flow behavior has been evaluated from the perspective of alloy development. Strain compensated Arrhenius model, modified Johnson–Cook (MJC) model, model D8A and artificial neural network (ANN) have been used to describe flow behavior of different model alloys. These alloys are four grades of SS 316LN with different nitrogen contents ranging from 0.07 to 0.22%. Grades with 0.07%N and 0.22%N have been used to determine suitable material constants of the constitutive equations and also to train the ANN model. While the ANN model has been developed with chemical composition as a direct input, the MJC and D8A models have been amended to incorporate the effect of nitrogen content on flow behavior. The prediction capabilities of all models have been validated using the experimental data obtained from grades containing 0.11%N and 0.14%N. The comparative analysis demonstrates that ‘N-amended D8A’ and ‘N-amended MJC’ are preferable to the ANN model for predicting flow behavior of different grades of 316LN. The work provides detailed insights into the usual statistical error analysis technique and frames five additional criteria which must be considered when a model is analyzed from the perspective of alloy development.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759CrossRef Y. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759CrossRef
2.
Zurück zum Zitat G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Netherlands, 1983, p 541–547 G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Netherlands, 1983, p 541–547
3.
Zurück zum Zitat F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816–1825CrossRef F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816–1825CrossRef
4.
Zurück zum Zitat G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31–48CrossRef G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31–48CrossRef
5.
Zurück zum Zitat Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. Xian, Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation, J. Mater. Process. Technol., 2008, 208(1), p 29–34CrossRef Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. Xian, Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation, J. Mater. Process. Technol., 2008, 208(1), p 29–34CrossRef
6.
Zurück zum Zitat H. Kobayashi and B. Dodd, A numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth, Int. J. Impact Eng, 1989, 8(1), p 1–13CrossRef H. Kobayashi and B. Dodd, A numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth, Int. J. Impact Eng, 1989, 8(1), p 1–13CrossRef
7.
Zurück zum Zitat Y. Wang and Z. Jiang, Dynamic Compressive Behavior of Selected Aluminum Alloy at Low Temperature, Mater. Sci. Eng. A, 2012, 553, p 176–180CrossRef Y. Wang and Z. Jiang, Dynamic Compressive Behavior of Selected Aluminum Alloy at Low Temperature, Mater. Sci. Eng. A, 2012, 553, p 176–180CrossRef
8.
Zurück zum Zitat S.K. Paul, Predicting the Flow Behavior of Metals Under Different Strain Rate and Temperature Through Phenomenological Modeling, Comput. Mater. Sci., 2012, 65, p 91–99CrossRef S.K. Paul, Predicting the Flow Behavior of Metals Under Different Strain Rate and Temperature Through Phenomenological Modeling, Comput. Mater. Sci., 2012, 65, p 91–99CrossRef
9.
Zurück zum Zitat A.S. Khan and S. Huang, Experimental and Theoretical Study of Mechanical Behavior of 1100 Aluminum in the Strain Rate Range 10−5–104 s−1, Int. J. Plast., 1992, 8(4), p 397–424CrossRef A.S. Khan and S. Huang, Experimental and Theoretical Study of Mechanical Behavior of 1100 Aluminum in the Strain Rate Range 10−5–104 s−1, Int. J. Plast., 1992, 8(4), p 397–424CrossRef
10.
Zurück zum Zitat S. Saadatkia, H. Mirzadeh, and J.-M. Cabrera, Hot Deformation Behavior, Dynamic Recrystallization, and Physically-Based Constitutive Modeling of Plain Carbon Steels, Mater. Sci. Eng. A, 2015, 636, p 196–202CrossRef S. Saadatkia, H. Mirzadeh, and J.-M. Cabrera, Hot Deformation Behavior, Dynamic Recrystallization, and Physically-Based Constitutive Modeling of Plain Carbon Steels, Mater. Sci. Eng. A, 2015, 636, p 196–202CrossRef
11.
Zurück zum Zitat G. Ji, Q. Li, and L. Li, A Physical-Based Constitutive Relation to Predict Flow Stress for Cu-0.4 Mg Alloy During Hot Working, Mater. Sci. Eng. A, 2014, 615, p 247–254CrossRef G. Ji, Q. Li, and L. Li, A Physical-Based Constitutive Relation to Predict Flow Stress for Cu-0.4 Mg Alloy During Hot Working, Mater. Sci. Eng. A, 2014, 615, p 247–254CrossRef
12.
Zurück zum Zitat A. He, G. Xie, X. Yang, X. Wang, and H. Zhang, A Physically-Based Constitutive Model for a Nitrogen Alloyed Ultralow Carbon Stainless Steel, Comput. Mater. Sci., 2015, 98, p 64–69CrossRef A. He, G. Xie, X. Yang, X. Wang, and H. Zhang, A Physically-Based Constitutive Model for a Nitrogen Alloyed Ultralow Carbon Stainless Steel, Comput. Mater. Sci., 2015, 98, p 64–69CrossRef
13.
Zurück zum Zitat D. Samantaray, S. Mandal, A. Bhaduri, S. Venugopal, and P. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng. A, 2011, 528(4), p 1937–1943CrossRef D. Samantaray, S. Mandal, A. Bhaduri, S. Venugopal, and P. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng. A, 2011, 528(4), p 1937–1943CrossRef
14.
Zurück zum Zitat D. Trimble, H. Shipley, L. Lea, A. Jardine, and G.E. O’Donnell, Constitutive Analysis of Biomedical Grade Co-27Cr-5Mo Alloy at High Strain Rates, Mater. Sci. Eng. A, 2017, 682, p 466–474CrossRef D. Trimble, H. Shipley, L. Lea, A. Jardine, and G.E. O’Donnell, Constitutive Analysis of Biomedical Grade Co-27Cr-5Mo Alloy at High Strain Rates, Mater. Sci. Eng. A, 2017, 682, p 466–474CrossRef
15.
Zurück zum Zitat Z. Zhu, Y. Lu, Q. Xie, D. Li, and N. Gao, Mechanical Properties and Dynamic Constitutive Model of 42CrMo Steel, Mater. Des., 2017, 119, p 171–179CrossRef Z. Zhu, Y. Lu, Q. Xie, D. Li, and N. Gao, Mechanical Properties and Dynamic Constitutive Model of 42CrMo Steel, Mater. Des., 2017, 119, p 171–179CrossRef
16.
Zurück zum Zitat J. Cai, Y. Lei, K. Wang, X. Zhang, C. Miao, and W. Li, A Comparative Investigation on the Capability of Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Describe Flow Behavior of BFe10-1-2 Cupronickel Alloy at Elevated Temperature, J. Mater. Eng. Perform., 2016, 25(5), p 1952–1963CrossRef J. Cai, Y. Lei, K. Wang, X. Zhang, C. Miao, and W. Li, A Comparative Investigation on the Capability of Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Describe Flow Behavior of BFe10-1-2 Cupronickel Alloy at Elevated Temperature, J. Mater. Eng. Perform., 2016, 25(5), p 1952–1963CrossRef
17.
Zurück zum Zitat Y. Lin, X.-M. Chen, and G. Liu, A modified Johnson–Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng. A, 2010, 527(26), p 6980–6986CrossRef Y. Lin, X.-M. Chen, and G. Liu, A modified Johnson–Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng. A, 2010, 527(26), p 6980–6986CrossRef
18.
Zurück zum Zitat A. He, G. Xie, H. Zhang, and X. Wang, A Comparative Study on Johnson–Cook, Modified Johnson–Cook and Arrhenius-Type Constitutive Models to Predict the High Temperature Flow Stress in 20CrMo Alloy Steel, Mater. Des., 2013, 52, p 677–685CrossRef A. He, G. Xie, H. Zhang, and X. Wang, A Comparative Study on Johnson–Cook, Modified Johnson–Cook and Arrhenius-Type Constitutive Models to Predict the High Temperature Flow Stress in 20CrMo Alloy Steel, Mater. Des., 2013, 52, p 677–685CrossRef
19.
Zurück zum Zitat Y. Lin and X.-M. Chen, A Combined Johnson–Cook and Zerilli–Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49(3), p 628–633CrossRef Y. Lin and X.-M. Chen, A Combined Johnson–Cook and Zerilli–Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49(3), p 628–633CrossRef
20.
Zurück zum Zitat Y.C. Lin, Q.-F. Li, Y.-C. Xia, and L.-T. Li, A Phenomenological Constitutive Model for High Temperature Flow Stress Prediction of Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2012, 534, p 654–662CrossRef Y.C. Lin, Q.-F. Li, Y.-C. Xia, and L.-T. Li, A Phenomenological Constitutive Model for High Temperature Flow Stress Prediction of Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2012, 534, p 654–662CrossRef
21.
Zurück zum Zitat Z. Akbari, H. Mirzadeh, and J.-M. Cabrera, A Simple Constitutive Model for Predicting Flow Stress of Medium Carbon Microalloyed Steel During Hot Deformation, Mater. Des., 2015, 77, p 126–131CrossRef Z. Akbari, H. Mirzadeh, and J.-M. Cabrera, A Simple Constitutive Model for Predicting Flow Stress of Medium Carbon Microalloyed Steel During Hot Deformation, Mater. Des., 2015, 77, p 126–131CrossRef
22.
Zurück zum Zitat S. Mandal, B.T. Gockel, S. Balachandran, D. Banerjee, and A.D. Rollett, Simulation of Plastic Deformation in Ti-5553 Alloy Using a Self-Consistent Viscoplastic Model, Int. J. Plast., 2017, 94, p 57–73CrossRef S. Mandal, B.T. Gockel, S. Balachandran, D. Banerjee, and A.D. Rollett, Simulation of Plastic Deformation in Ti-5553 Alloy Using a Self-Consistent Viscoplastic Model, Int. J. Plast., 2017, 94, p 57–73CrossRef
23.
Zurück zum Zitat P.S. Follansbee and U.F. Kocks, A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable, Acta Metall., 1988, 36(1), p 81–93CrossRef P.S. Follansbee and U.F. Kocks, A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable, Acta Metall., 1988, 36(1), p 81–93CrossRef
24.
Zurück zum Zitat K.S. Prasad, A.K. Gupta, Y. Singh, and S.K. Singh, A Modified Mechanical Threshold Stress Constitutive Model for Austenitic Stainless Steels, J. Mater. Eng. Perform., 2016, 25(12), p 5411–5423CrossRef K.S. Prasad, A.K. Gupta, Y. Singh, and S.K. Singh, A Modified Mechanical Threshold Stress Constitutive Model for Austenitic Stainless Steels, J. Mater. Eng. Perform., 2016, 25(12), p 5411–5423CrossRef
25.
Zurück zum Zitat L.-E. Lindgren, K. Domkin, and S. Hansson, Dislocations, Vacancies and Solute Diffusion in Physical Based Plasticity Model for AISI, 316L, Mech. Mater., 2008, 40(11), p 907–919CrossRef L.-E. Lindgren, K. Domkin, and S. Hansson, Dislocations, Vacancies and Solute Diffusion in Physical Based Plasticity Model for AISI, 316L, Mech. Mater., 2008, 40(11), p 907–919CrossRef
26.
Zurück zum Zitat S. Venkadesan, P. Sivaprasad, M. Vasudevan, S. Venugopal, and P. Rodriguez, Effect of Ti/C Ratio and Prior Cold Work on the Tensile Properties of 15Cr-15Ni-2.2 Mo-Ti Modified Austenitic Stainless Steel, Trans. Indian Inst. Met., 1992, 45(1), p 57–68 S. Venkadesan, P. Sivaprasad, M. Vasudevan, S. Venugopal, and P. Rodriguez, Effect of Ti/C Ratio and Prior Cold Work on the Tensile Properties of 15Cr-15Ni-2.2 Mo-Ti Modified Austenitic Stainless Steel, Trans. Indian Inst. Met., 1992, 45(1), p 57–68
27.
Zurück zum Zitat P.V. Sivaprasad, Hot Deformation Behaviour of 15Cr-15Ni-2.2 Mo-Ti modified Stainless Steels and 9Cr-1M of Ferritic Steels: A Study Using Processing Maps and Process Modelling. Ph.D. Indian Institute of Technology, 1997 P.V. Sivaprasad, Hot Deformation Behaviour of 15Cr-15Ni-2.2 Mo-Ti modified Stainless Steels and 9Cr-1M of Ferritic Steels: A Study Using Processing Maps and Process Modelling. Ph.D. Indian Institute of Technology, 1997
28.
Zurück zum Zitat A. Poonguzhali, M. Pujar, and U.K. Mudali, Effect of Nitrogen and Sensitization on the Microstructure and Pitting Corrosion Behavior of AISI, Type 316LN Stainless Steels, J. Mater. Eng. Perform., 2013, 22(4), p 1170–1178CrossRef A. Poonguzhali, M. Pujar, and U.K. Mudali, Effect of Nitrogen and Sensitization on the Microstructure and Pitting Corrosion Behavior of AISI, Type 316LN Stainless Steels, J. Mater. Eng. Perform., 2013, 22(4), p 1170–1178CrossRef
29.
Zurück zum Zitat M. Mathew, K. Laha, and V. Ganesan, Improving Creep Strength of 316L Stainless Steel by Alloying with Nitrogen, Mater. Sci. Eng. A, 2012, 535, p 76–83CrossRef M. Mathew, K. Laha, and V. Ganesan, Improving Creep Strength of 316L Stainless Steel by Alloying with Nitrogen, Mater. Sci. Eng. A, 2012, 535, p 76–83CrossRef
30.
Zurück zum Zitat S. Mandal, P. Sivaprasad, S. Venugopal, K. Murthy, and B. Raj, Artificial Neural Network Modeling of Composition–Process–Property Correlations in Austenitic Stainless Steels, Mater. Sci. Eng. A, 2008, 485(1), p 571–580CrossRef S. Mandal, P. Sivaprasad, S. Venugopal, K. Murthy, and B. Raj, Artificial Neural Network Modeling of Composition–Process–Property Correlations in Austenitic Stainless Steels, Mater. Sci. Eng. A, 2008, 485(1), p 571–580CrossRef
31.
Zurück zum Zitat X. Xia, J. Nie, C. Davies, W. Tang, S. Xu, and N. Birbilis, An Artificial Neural Network for Predicting Corrosion Rate and Hardness of Magnesium Alloys, Mater. Des., 2016, 90, p 1034–1043CrossRef X. Xia, J. Nie, C. Davies, W. Tang, S. Xu, and N. Birbilis, An Artificial Neural Network for Predicting Corrosion Rate and Hardness of Magnesium Alloys, Mater. Des., 2016, 90, p 1034–1043CrossRef
32.
Zurück zum Zitat S. Malinov and W. Sha, Application of Artificial Neural Networks for Modelling Correlations in Titanium Alloys, Mat. Sci. Eng. A, 2004, 365(1), p 202–211CrossRef S. Malinov and W. Sha, Application of Artificial Neural Networks for Modelling Correlations in Titanium Alloys, Mat. Sci. Eng. A, 2004, 365(1), p 202–211CrossRef
33.
Zurück zum Zitat D. Samantaray, S. Mandal, and A. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32(5), p 2797–2802CrossRef D. Samantaray, S. Mandal, and A. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32(5), p 2797–2802CrossRef
34.
Zurück zum Zitat R. Goetz and S. Semiatin, The Adiabatic Correction Factor for Deformation Heating During the Uniaxial Compression Test, J. Mater. Eng. Perform., 2001, 10(6), p 710–717CrossRef R. Goetz and S. Semiatin, The Adiabatic Correction Factor for Deformation Heating During the Uniaxial Compression Test, J. Mater. Eng. Perform., 2001, 10(6), p 710–717CrossRef
35.
Zurück zum Zitat V. Ganesan, M. Mathew, and K. Sankara Rao, Influence of Nitrogen on Tensile Properties of 316LN SS, Mater. Sci. Technol., 2009, 25(5), p 614–618CrossRef V. Ganesan, M. Mathew, and K. Sankara Rao, Influence of Nitrogen on Tensile Properties of 316LN SS, Mater. Sci. Technol., 2009, 25(5), p 614–618CrossRef
36.
Zurück zum Zitat V. Gavriljuk and H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer, New York, 2013 V. Gavriljuk and H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer, New York, 2013
37.
Zurück zum Zitat J. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng. A, 1996, 207(2), p 159–169CrossRef J. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng. A, 1996, 207(2), p 159–169CrossRef
38.
Zurück zum Zitat J. Simmons, Influence of Nitride (Cr 2N) Precipitation on the Plastic Flow Behavior of High-Nitrogen Austenitic Stainless Steel, Scr. Metall. Mater., 1995, 32(2), p 265–270CrossRef J. Simmons, Influence of Nitride (Cr 2N) Precipitation on the Plastic Flow Behavior of High-Nitrogen Austenitic Stainless Steel, Scr. Metall. Mater., 1995, 32(2), p 265–270CrossRef
39.
Zurück zum Zitat D. Samantaray, S. Mandal, V. Kumar, S. Albert, A. Bhaduri, and T. Jayakumar, Optimization of Processing Parameters Based on High Temperature Flow Behavior and Microstructural Evolution of a Nitrogen Enhanced 316L (N) Stainless Steel, Mat. Sci. Eng. A, 2012, 552, p 236–244CrossRef D. Samantaray, S. Mandal, V. Kumar, S. Albert, A. Bhaduri, and T. Jayakumar, Optimization of Processing Parameters Based on High Temperature Flow Behavior and Microstructural Evolution of a Nitrogen Enhanced 316L (N) Stainless Steel, Mat. Sci. Eng. A, 2012, 552, p 236–244CrossRef
40.
Zurück zum Zitat D. Samantaray, B. Aashranth, S. Kumar, M.A. Davinci, U. Borah, S.K. Albert, and A. Bhaduri, Plastic Deformation of SS 316LN: Thermo-Mechanical and Microstructural Aspects, Procedia Eng., 2017, 207, p 1785–1790CrossRef D. Samantaray, B. Aashranth, S. Kumar, M.A. Davinci, U. Borah, S.K. Albert, and A. Bhaduri, Plastic Deformation of SS 316LN: Thermo-Mechanical and Microstructural Aspects, Procedia Eng., 2017, 207, p 1785–1790CrossRef
41.
Zurück zum Zitat S. Kumar, D. Samantaray, U. Borah, and A.K. Bhaduri, Analysis of Elevated Temperature Flow Behavior of 316LN Stainless Steel Under Compressive Loading, Trans. Indian Inst. Met., 2016, 70(7), p 1857–1867CrossRef S. Kumar, D. Samantaray, U. Borah, and A.K. Bhaduri, Analysis of Elevated Temperature Flow Behavior of 316LN Stainless Steel Under Compressive Loading, Trans. Indian Inst. Met., 2016, 70(7), p 1857–1867CrossRef
42.
Zurück zum Zitat D. Trimble and G.E. O’Donnell, Constitutive Modelling for Elevated Temperature Flow Behaviour of AA7075, Mater. Des., 2015, 76, p 150–168CrossRef D. Trimble and G.E. O’Donnell, Constitutive Modelling for Elevated Temperature Flow Behaviour of AA7075, Mater. Des., 2015, 76, p 150–168CrossRef
43.
Zurück zum Zitat J. Wang, G. Zhao, L. Chen, and J. Li, A Comparative Study of Several Constitutive Models for Powder Metallurgy Tungsten at Elevated Temperature, Mater. Des., 2016, 90, p 91–100CrossRef J. Wang, G. Zhao, L. Chen, and J. Li, A Comparative Study of Several Constitutive Models for Powder Metallurgy Tungsten at Elevated Temperature, Mater. Des., 2016, 90, p 91–100CrossRef
44.
Zurück zum Zitat P. Zhang, C. Hu, Q. Zhu, C.-G. Ding, and H.-Y. Qin, Hot Compression Deformation and Constitutive Modeling of GH4698 Alloy, Mater. Des. (1980–2015), 2015, 65, p 1153–1160CrossRef P. Zhang, C. Hu, Q. Zhu, C.-G. Ding, and H.-Y. Qin, Hot Compression Deformation and Constitutive Modeling of GH4698 Alloy, Mater. Des. (1980–2015), 2015, 65, p 1153–1160CrossRef
45.
Zurück zum Zitat Y.C. Lin, D.-X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123CrossRef Y.C. Lin, D.-X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123CrossRef
46.
Zurück zum Zitat L. Zhang, X. Feng, X. Wang, and C. Liu, On the Constitutive Model of Nitrogen-Containing Austenitic Stainless Steel 316LN at Elevated Temperature, PLoS ONE, 2014, 9(11), p e102687CrossRef L. Zhang, X. Feng, X. Wang, and C. Liu, On the Constitutive Model of Nitrogen-Containing Austenitic Stainless Steel 316LN at Elevated Temperature, PLoS ONE, 2014, 9(11), p e102687CrossRef
47.
Zurück zum Zitat A.K. Shukla, S.V.S. Narayana Murty, S.C. Sharma, and K. Mondal, Constitutive Modeling of Hot Deformation Behavior of Vacuum Hot Pressed Cu-8Cr-4Nb Alloy, Mater. Des., 2015, 75, p 57–64CrossRef A.K. Shukla, S.V.S. Narayana Murty, S.C. Sharma, and K. Mondal, Constitutive Modeling of Hot Deformation Behavior of Vacuum Hot Pressed Cu-8Cr-4Nb Alloy, Mater. Des., 2015, 75, p 57–64CrossRef
48.
Zurück zum Zitat D. Samantaray, A. Patel, U. Borah, S. Albert, and A. Bhaduri, Constitutive Flow Behavior of IFAC-1 Austenitic Stainless Steel Depicting Strain Saturation Over a Wide Range of Strain Rates and Temperatures, Mater. Des., 2014, 56, p 565–571CrossRef D. Samantaray, A. Patel, U. Borah, S. Albert, and A. Bhaduri, Constitutive Flow Behavior of IFAC-1 Austenitic Stainless Steel Depicting Strain Saturation Over a Wide Range of Strain Rates and Temperatures, Mater. Des., 2014, 56, p 565–571CrossRef
49.
Zurück zum Zitat A. Jenab, I. Sari Sarraf, D.E. Green, T. Rahmaan, and M.J. Worswick, The Use of Genetic Algorithm and Neural Network to Predict Rate-Dependent Tensile Flow Behaviour of AA5182-O Sheets, Mater. Des., 2016, 94, p 262–273CrossRef A. Jenab, I. Sari Sarraf, D.E. Green, T. Rahmaan, and M.J. Worswick, The Use of Genetic Algorithm and Neural Network to Predict Rate-Dependent Tensile Flow Behaviour of AA5182-O Sheets, Mater. Des., 2016, 94, p 262–273CrossRef
50.
Zurück zum Zitat S.-W. Wu, X.-G. Zhou, G.-M. Cao, Z.-Y. Liu, and G.-D. Wang, The Improvement on Constitutive Modeling of Nb-Ti Micro Alloyed Steel by Using Intelligent Algorithms, Mater. Des., 2017, 116, p 676–685CrossRef S.-W. Wu, X.-G. Zhou, G.-M. Cao, Z.-Y. Liu, and G.-D. Wang, The Improvement on Constitutive Modeling of Nb-Ti Micro Alloyed Steel by Using Intelligent Algorithms, Mater. Des., 2017, 116, p 676–685CrossRef
51.
Zurück zum Zitat C.M. Sellars and W. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138CrossRef C.M. Sellars and W. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138CrossRef
52.
Zurück zum Zitat Y.-C. Lin, M.-S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499(1), p 88–92CrossRef Y.-C. Lin, M.-S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499(1), p 88–92CrossRef
53.
Zurück zum Zitat W. Peng, W. Zeng, Q. Wang, and H. Yu, Comparative Study on Constitutive Relationship of As-Cast Ti60 Titanium Alloy During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Mater. Des., 2013, 51, p 95–104CrossRef W. Peng, W. Zeng, Q. Wang, and H. Yu, Comparative Study on Constitutive Relationship of As-Cast Ti60 Titanium Alloy During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Mater. Des., 2013, 51, p 95–104CrossRef
54.
Zurück zum Zitat D. Samantaray, S. Mandal, and A. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31(2), p 981–984CrossRef D. Samantaray, S. Mandal, and A. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31(2), p 981–984CrossRef
55.
Zurück zum Zitat Y.C. Lin, J. Zhang, and J. Zhong, Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel, Comput. Mater. Sci., 2008, 43(4), p 752–758CrossRef Y.C. Lin, J. Zhang, and J. Zhong, Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel, Comput. Mater. Sci., 2008, 43(4), p 752–758CrossRef
56.
Zurück zum Zitat G. Ji, F. Li, Q. Li, H. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528(13), p 4774–4782CrossRef G. Ji, F. Li, Q. Li, H. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528(13), p 4774–4782CrossRef
57.
Zurück zum Zitat Y. Qin, Q. Pan, Y. He, W. Li, X. Liu, and X. Fan, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of ZK60 Magnesium Alloy During Hot Compression, Mater. Manuf. Process., 2010, 25(7), p 539–545CrossRef Y. Qin, Q. Pan, Y. He, W. Li, X. Liu, and X. Fan, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of ZK60 Magnesium Alloy During Hot Compression, Mater. Manuf. Process., 2010, 25(7), p 539–545CrossRef
58.
Zurück zum Zitat A. Jenab, A.K. Taheri, and K. Jenab, The Use of ANN to Predict the Hot Deformation Behavior of AA7075 at Low Strain Rates, J. Mater. Eng. Perform., 2013, 22(3), p 903–910CrossRef A. Jenab, A.K. Taheri, and K. Jenab, The Use of ANN to Predict the Hot Deformation Behavior of AA7075 at Low Strain Rates, J. Mater. Eng. Perform., 2013, 22(3), p 903–910CrossRef
59.
Zurück zum Zitat A. Sarkar and J. Chakravartty, Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach, J. Mater. Eng. Perform., 2013, 22(10), p 2982–2989CrossRef A. Sarkar and J. Chakravartty, Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach, J. Mater. Eng. Perform., 2013, 22(10), p 2982–2989CrossRef
60.
Zurück zum Zitat S.L. Semiatin and J.J. Jonas, Formability and Workability of Metals: Plastic Instability and Flow Localization, Am. Soc. Met., 1984, 1984, p 299 S.L. Semiatin and J.J. Jonas, Formability and Workability of Metals: Plastic Instability and Flow Localization, Am. Soc. Met., 1984, 1984, p 299
61.
Zurück zum Zitat T. Holota, M. Kotus, M. Holienčinová, J. Mareček, and M. Zach, Application of Radar Chart in the Selection of Material for Clutch Plates, Acta Univ. Agric. Silvic. Mendel. Brun., 2015, 63, p 5CrossRef T. Holota, M. Kotus, M. Holienčinová, J. Mareček, and M. Zach, Application of Radar Chart in the Selection of Material for Clutch Plates, Acta Univ. Agric. Silvic. Mendel. Brun., 2015, 63, p 5CrossRef
Metadaten
Titel
Assessing Constitutive Models for Prediction of High-Temperature Flow Behavior with a Perspective of Alloy Development
verfasst von
Santosh Kumar
B. Aashranth
M. Arvinth Davinci
Dipti Samantaray
Utpal Borah
A. K. Bhaduri
Publikationsdatum
23.02.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3237-6

Weitere Artikel der Ausgabe 4/2018

Journal of Materials Engineering and Performance 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.