Skip to main content

2017 | OriginalPaper | Buchkapitel

Assessing the Impacts of Marine-Hydrokinetic Energy (MHK) Device Noise on Marine Systems by Using Underwater Acoustic Models as Enabling Tools

verfasst von : Paul C. Etter

Erschienen in: Marine Renewable Energy

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes the utilization of underwater acoustic models for the evaluation of marine-system noise impacts associated with the installation and operation of marine-hydrokinetic energy (MHK) devices, particularly in coastal oceans. Coastal environments are generally characterized by high spatial and temporal variabilities, which make them very complex acoustic environments. Underwater acoustic models serve as enabling tools for assessing noise impacts on marine systems by generating analytical metrics useful in managing coastal resources. This review is set in the context of an underwater soundscape, which is a combination of sounds that characterize, or arise from, an ocean environment. The study of a soundscape is sometimes referred to as acoustic ecology. Disruption of the natural acoustic environment results in noise pollution: The potential effects of anthropogenic sound sources on marine mammals and fish that could include auditory damage. Changes in the ocean soundscape have also been driven by natural factors arising from climate change, including ocean acidification. The field of underwater acoustics enables us to observe and predict the behavior of this soundscape and the response of the natural acoustic environment to noise pollution. Underwater acoustics entails the development and employment of acoustical methods to image underwater features, to communicate information via the oceanic waveguide, or to measure oceanic properties. Modeling tools traditionally used in underwater acoustics have undergone a necessary transformation to respond to the rapidly changing requirements imposed by this dynamic soundscape. Additional advances have been achieved using energy-flux techniques that can simplify the interpretation of sound-channel models. Nonintrusive measurement approaches include new acoustic-transmission options to minimize impacts on aquatic life. Applied underwater acoustic modeling technologies have further evolved over the past several years in response to new regulatory initiatives that have placed restrictions on the uses of sound in the ocean. The mitigation of marine-mammal endangerment is now an integral consideration in acoustic-system design, installation, and operation. Marine-mammal protection research has focused on simulating anthropogenic sound sources including seismic-exploration activity, merchant shipping traffic, and a new generation of multistatic naval sonar systems. Additional sources derive from ocean-renewable energy resources, including the deployment of wind farms, tidal turbines, and wave-energy devices. Many underwater acoustic models presently used in environmental impact assessments consider only the sound-pressure component of sound, which is the means by which marine mammals hear; however, the primary mechanism by which fish and invertebrate species detect sound is through the particle-motion component of sound. To assist practitioners in the proper usage of acoustic models for assessing the impacts of MHK device noise on marine systems, selection guidance is provided for the current inventory of underwater acoustic propagation and noise models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Andrew, R. K., Howe, B. M., Mercer, J. A., & Dzieciuch, M. A. (2002). Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoustic Research Letters Online, 3(2), 65–70.CrossRef Andrew, R. K., Howe, B. M., Mercer, J. A., & Dzieciuch, M. A. (2002). Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoustic Research Letters Online, 3(2), 65–70.CrossRef
Zurück zum Zitat Austin, M., Chorney, N., Ferguson, J., Leary, D., O’Neill, C., & Sneddon, H. (2009). Assessment of underwater noise generated by wave energy devices. Prepared by JASCO Applied Sciences on behalf of Oregon Wave Energy Trust. Technical Report, P001081-001, Version 1.0. Austin, M., Chorney, N., Ferguson, J., Leary, D., O’Neill, C., & Sneddon, H. (2009). Assessment of underwater noise generated by wave energy devices. Prepared by JASCO Applied Sciences on behalf of Oregon Wave Energy Trust. Technical Report, P001081-001, Version 1.0.
Zurück zum Zitat Bass, S. J., & Hay, A. E. (1997). Ambient noise in the natural surf zone: Wave-breaking frequencies. IEEE Journal of Oceanic Engineering, 22, 411–424.CrossRef Bass, S. J., & Hay, A. E. (1997). Ambient noise in the natural surf zone: Wave-breaking frequencies. IEEE Journal of Oceanic Engineering, 22, 411–424.CrossRef
Zurück zum Zitat Carey, W. M., & Evans, R. B. (2011). Ocean ambient noise: Measurement and theory. New York: Springer.CrossRef Carey, W. M., & Evans, R. B. (2011). Ocean ambient noise: Measurement and theory. New York: Springer.CrossRef
Zurück zum Zitat Copping, A. E., & O’Toole, M. J. (2010). OES-IA annex IV: Environmental effects of marine and hydrokinetic devices. In Experts’ Workshop, September 27th–28th 2010, Clontarf Castle, Dublin, Ireland. Pacific Northwest National Laboratory, PNNL-20034. Prepared for the US Department of Energy under Contract DE-AC05-76RL01830, 64 pp. Copping, A. E., & O’Toole, M. J. (2010). OES-IA annex IV: Environmental effects of marine and hydrokinetic devices. In Experts’ Workshop, September 27th–28th 2010, Clontarf Castle, Dublin, Ireland. Pacific Northwest National Laboratory, PNNL-20034. Prepared for the US Department of Energy under Contract DE-AC05-76RL01830, 64 pp.
Zurück zum Zitat Etter, P. C. (2013). Underwater acoustic modeling and simulation (4th ed.). Boca Raton, Florida, USA: CRC Press.CrossRefMATH Etter, P. C. (2013). Underwater acoustic modeling and simulation (4th ed.). Boca Raton, Florida, USA: CRC Press.CrossRefMATH
Zurück zum Zitat Felizardo, F. C., & Melville, W. K. (1995). Correlations between ambient noise and the ocean surface wave field. Journal of Physical Oceanography, 25, 513–532.CrossRef Felizardo, F. C., & Melville, W. K. (1995). Correlations between ambient noise and the ocean surface wave field. Journal of Physical Oceanography, 25, 513–532.CrossRef
Zurück zum Zitat Finette, S. (2005). Embedding uncertainty into ocean acoustic propagation models. The Journal of the Acoustical Society of America, 117, 997–1000.CrossRef Finette, S. (2005). Embedding uncertainty into ocean acoustic propagation models. The Journal of the Acoustical Society of America, 117, 997–1000.CrossRef
Zurück zum Zitat Finneran, J. J. (2015). Noise-induced hearing loss in marine mammals: A review of temporary threshold shift studies from 1996 to 2015. The Journal of the Acoustical Society of America, 138, 1702–1726.CrossRef Finneran, J. J. (2015). Noise-induced hearing loss in marine mammals: A review of temporary threshold shift studies from 1996 to 2015. The Journal of the Acoustical Society of America, 138, 1702–1726.CrossRef
Zurück zum Zitat Ikpekha, O. W., Soberon, F., Daniels, S. (2014). Modelling the propagation of underwater acoustic signals of a marine energy device using finite element method. In International Conference on Renewable Energies and Power Quality (ICREPQ’14), Cordoba, Spain. Ikpekha, O. W., Soberon, F., Daniels, S. (2014). Modelling the propagation of underwater acoustic signals of a marine energy device using finite element method. In International Conference on Renewable Energies and Power Quality (ICREPQ’14), Cordoba, Spain.
Zurück zum Zitat Lawson, J. W. (2009). The use of sound propagation models to determine safe distances from a seismic sound energy source. Department of Fisheries and Oceans, Canadian Science Advisory Secretariat, Res. Doc. 2009/060. Lawson, J. W. (2009). The use of sound propagation models to determine safe distances from a seismic sound energy source. Department of Fisheries and Oceans, Canadian Science Advisory Secretariat, Res. Doc. 2009/060.
Zurück zum Zitat Lloyd, T. P., Turnock, S. R., & Humphrey, V. F. (2011). Modelling techniques for underwater noise generated by tidal turbines in shallow waters. In Proceedings of 30th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2011), Rotterdam, The Netherlands (pp. 1–9). Lloyd, T. P., Turnock, S. R., & Humphrey, V. F. (2011). Modelling techniques for underwater noise generated by tidal turbines in shallow waters. In Proceedings of 30th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2011), Rotterdam, The Netherlands (pp. 1–9).
Zurück zum Zitat Lurton, X. (1992). The range-averaged intensity model: A tool for underwater acoustic field analysis. IEEE Journal of Oceanic Engineering, 17, 138–149.CrossRef Lurton, X. (1992). The range-averaged intensity model: A tool for underwater acoustic field analysis. IEEE Journal of Oceanic Engineering, 17, 138–149.CrossRef
Zurück zum Zitat Lurton, X. (2002). An introduction to underwater acoustics: Principles and applications. New York: Springer. Lurton, X. (2002). An introduction to underwater acoustics: Principles and applications. New York: Springer.
Zurück zum Zitat McDonald, M. A., Hildebrand, J. A., & Wiggins, S. M. (2006). Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island California. The Journal of the Acoustical Society of America, 120, 711–718.CrossRef McDonald, M. A., Hildebrand, J. A., & Wiggins, S. M. (2006). Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island California. The Journal of the Acoustical Society of America, 120, 711–718.CrossRef
Zurück zum Zitat McDonald, M. A., Hildebrand, J. A., Wiggins, S. M., & Ross, D. (2008). A 50 year comparison of ambient ocean noise near San Clemente Island: A bathymetrically complex coastal region off Southern California. The Journal of the Acoustical Society of America, 124, 1985–1992.CrossRef McDonald, M. A., Hildebrand, J. A., Wiggins, S. M., & Ross, D. (2008). A 50 year comparison of ambient ocean noise near San Clemente Island: A bathymetrically complex coastal region off Southern California. The Journal of the Acoustical Society of America, 124, 1985–1992.CrossRef
Zurück zum Zitat National Research Council. (2003). Ocean noise and marine mammals. Washington: The National Academies Press. National Research Council. (2003). Ocean noise and marine mammals. Washington: The National Academies Press.
Zurück zum Zitat National Research Council. (2005). Marine mammal populations and ocean noise: Determining when noise causes biologically significant effects. Washington, DC: The National Academies Press. National Research Council. (2005). Marine mammal populations and ocean noise: Determining when noise causes biologically significant effects. Washington, DC: The National Academies Press.
Zurück zum Zitat Orcutt, J. A. (1988). Ultralow- and very-low-frequency seismic and acoustic noise in the Pacific. The Journal of the Acoustical Society of America, 84(1), S194. Orcutt, J. A. (1988). Ultralow- and very-low-frequency seismic and acoustic noise in the Pacific. The Journal of the Acoustical Society of America, 84(1), S194.
Zurück zum Zitat Scrimger, J. A., Evans, D. J., McBean, G. A., Farmer, D. M., & Kerman, B. R. (1987). Underwater noise due to rain, hail, and snow. The Journal of the Acoustical Society of America, 81, 79–86.CrossRef Scrimger, J. A., Evans, D. J., McBean, G. A., Farmer, D. M., & Kerman, B. R. (1987). Underwater noise due to rain, hail, and snow. The Journal of the Acoustical Society of America, 81, 79–86.CrossRef
Zurück zum Zitat Shyu, H.-J., & Hillson, R. (2006). A software workbench for estimating the effects of cumulative sound exposure in marine mammals. IEEE Journal of Oceanic Engineering, 31, 8–21.CrossRef Shyu, H.-J., & Hillson, R. (2006). A software workbench for estimating the effects of cumulative sound exposure in marine mammals. IEEE Journal of Oceanic Engineering, 31, 8–21.CrossRef
Zurück zum Zitat Siderius, M., & Porter, M. B. (2006). Modeling techniques for marine-mammal risk assessment. IEEE Journal of Oceanic Engineering, 31, 49–60.CrossRef Siderius, M., & Porter, M. B. (2006). Modeling techniques for marine-mammal risk assessment. IEEE Journal of Oceanic Engineering, 31, 49–60.CrossRef
Zurück zum Zitat Todd, V. L. G., Todd, I. B., Gardiner, J. C., & Morrin, E. C. N. (2015). Marine mammal observer and passive acoustic monitoring handbook. Exeter, UK: Pelagic Publishing. Todd, V. L. G., Todd, I. B., Gardiner, J. C., & Morrin, E. C. N. (2015). Marine mammal observer and passive acoustic monitoring handbook. Exeter, UK: Pelagic Publishing.
Zurück zum Zitat von Benda-Beckmann, A. M., Wensveen, P. J., Kvadsheim, P. H., Lam, F.-P. A., Miller, P. J. O., Tyack, P. L., et al. (2014). Modeling effectiveness of gradual increases in source level to mitigate effects of sonar on marine mammals. Conservation Biology, 28(1), 119–128. doi:10.1111/cobi.12162.CrossRef von Benda-Beckmann, A. M., Wensveen, P. J., Kvadsheim, P. H., Lam, F.-P. A., Miller, P. J. O., Tyack, P. L., et al. (2014). Modeling effectiveness of gradual increases in source level to mitigate effects of sonar on marine mammals. Conservation Biology, 28(1), 119–128. doi:10.​1111/​cobi.​12162.CrossRef
Zurück zum Zitat Weston, D. E. (1971). Intensity-range relations in oceanographic acoustics. Journal of Sound and Vibration, 18, 271–287.CrossRef Weston, D. E. (1971). Intensity-range relations in oceanographic acoustics. Journal of Sound and Vibration, 18, 271–287.CrossRef
Zurück zum Zitat Weston, D. E. (1980a). Acoustic flux formulas for range-dependent ocean ducts. The Journal of the Acoustical Society of America, 68, 269–281.CrossRefMATH Weston, D. E. (1980a). Acoustic flux formulas for range-dependent ocean ducts. The Journal of the Acoustical Society of America, 68, 269–281.CrossRefMATH
Zurück zum Zitat Weston, D. E. (1980b). Acoustic flux methods for oceanic guided waves. The Journal of the Acoustical Society of America, 68, 287–296.CrossRefMATH Weston, D. E. (1980b). Acoustic flux methods for oceanic guided waves. The Journal of the Acoustical Society of America, 68, 287–296.CrossRefMATH
Zurück zum Zitat Zykov, M. (2013). Underwater sound modeling of low energy geophysical equipment operations. JASCO Document 00600, Version 2.0. Prepared by JASCO Applied Sciences for CSA Ocean Sciences Inc. Zykov, M. (2013). Underwater sound modeling of low energy geophysical equipment operations. JASCO Document 00600, Version 2.0. Prepared by JASCO Applied Sciences for CSA Ocean Sciences Inc.
Metadaten
Titel
Assessing the Impacts of Marine-Hydrokinetic Energy (MHK) Device Noise on Marine Systems by Using Underwater Acoustic Models as Enabling Tools
verfasst von
Paul C. Etter
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-53536-4_13