Skip to main content
Erschienen in: Thermal Engineering 9/2022

01.09.2022 | ENVIRONMENT PROTECTION

Assessment of the Potential for Decreasing Greenhouse Gas Emission in Burning Fuels in Boilers at Thermal-Power Plants (TPP) and Boiler Houses

verfasst von: P. V. Roslyakov, B. A. Rybakov, M. A. Savitenko, I. L. Ionkin, B. Luning

Erschienen in: Thermal Engineering | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many countries around the world, including Russia, are performing extensive work towards meeting the Paris Agreement goals to reduce greenhouse gas emissions. One of the main industries that is an anthropogenic source of greenhouse gases is the coal-fired heat and power industry. A change-over from coal to natural gas becomes a promising measure for reducing carbon dioxide emission in the power industry. In the process, special attention is given to the combustion of natural gas mixed with hydrogen. This work examined engineering capabilities for burning hydrogen-containing gases (HCG) in conventional and condensing power facilities. Increasing the content of hydrogen in a mixture with natural gas when burning it in boilers has been demonstrated to affect the heat absorption of all heating surfaces in the boiler gas path, the gas temperature, and, ultimately, the boiler efficiency of the boiler, thereby requiring in-depth redesign of conventional gas-fired and pulverized coal-fired boilers. At the same time, the addition of hydrogen to natural gas extends the concentration range of stable combustion of such a mixture and increases the normal flame propagation velocity, which not only plays a positive role but also makes more intricate the practical implementation of the combustion of a hydrogen–natural gas mixture in burners and power facilities. Measures should be taken to prevent self-ignition of hydrogen-containing gases due to their higher fire and explosion hazard, including issues related to the location of process equipment and hydrogen transportation. A simultaneous decrease in atmospheric emissions of both water vapor and carbon dioxide during combustion of natural gas or hydrogen-containing gases in steam- and hot-water boilers can be attained by means of condensing heat recovery units that will improve the efficiency of fuel utilization and increase the thermal capacity of the power facility.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Paris Agreement (United Nations, New York, 2015). Paris Agreement (United Nations, New York, 2015).
2.
Zurück zum Zitat Gas for Climate — Gas Decarbonization Pathways 2020–2050 (Guidehouse, Utrecht, The Netherlands, 2020). Gas for Climate — Gas Decarbonization Pathways 2020–2050 (Guidehouse, Utrecht, The Netherlands, 2020).
3.
Zurück zum Zitat An Overview of the Climate Commitments of Global Companies “Corporate Strategies for Carbon Neutrality” (Dep. Mongostoronnego Ekon. Sotr. Minekonomrazvit. Ross., 2021) [in Russian]. An Overview of the Climate Commitments of Global Companies “Corporate Strategies for Carbon Neutrality” (Dep. Mongostoronnego Ekon. Sotr. Minekonomrazvit. Ross., 2021) [in Russian].
4.
Zurück zum Zitat On Reduction of Greenhouse Gas Emissions, RF President Decree No. 666 of November 4, 2020. On Reduction of Greenhouse Gas Emissions, RF President Decree No. 666 of November 4, 2020.
5.
Zurück zum Zitat Strategy for Socio-Economic Development of the Russian Federation with Low Greenhouse Gas Emissions until 2050, Approved by RF Government Edict No 3052-r of October 29, 2021. Strategy for Socio-Economic Development of the Russian Federation with Low Greenhouse Gas Emissions until 2050, Approved by RF Government Edict No 3052-r of October 29, 2021.
7.
Zurück zum Zitat T. Nazarenko, Reference Information on Anthropogenic Greenhouse Gas Emissions. https://pandia.ru/text/80/ 310/1378.php T. Nazarenko, Reference Information on Anthropogenic Greenhouse Gas Emissions. https://​pandia.​ru/​text/​80/​ 310/1378.php
8.
Zurück zum Zitat “Reducing the carbon intensity of electric energy,” TEK Ross., No. 11, 11–18 (2019). “Reducing the carbon intensity of electric energy,” TEK Ross., No. 11, 11–18 (2019).
9.
Zurück zum Zitat Concept of Hydrogen Power Development in the Russian Federation, Approved by RF Government Edict No. 2162-r of August 5, 2021. Concept of Hydrogen Power Development in the Russian Federation, Approved by RF Government Edict No. 2162-r of August 5, 2021.
10.
Zurück zum Zitat B. A. Rybakov and M. A. Savitenko, “Effect of fuel composition on greenhouse gas emissions,” Energ. Prom-st. Ross., No. 11–12, 415–416 (2021). B. A. Rybakov and M. A. Savitenko, “Effect of fuel composition on greenhouse gas emissions,” Energ. Prom-st. Ross., No. 11–12, 415–416 (2021).
11.
Zurück zum Zitat On Approval of Methodological Provisions for Calculating the Fuel and Energy Balance of the Russian Federation in Accordance with International Practice, RF State Committee on Statistics Resolution No. 46 of June 23, 1999. On Approval of Methodological Provisions for Calculating the Fuel and Energy Balance of the Russian Federation in Accordance with International Practice, RF State Committee on Statistics Resolution No. 46 of June 23, 1999.
12.
Zurück zum Zitat Action Plan “Development of Hydrogen Energy in the Russian Federation until 2024,” Approved by RF Government Edict No. 2634-r of October 12, 2020. Action Plan “Development of Hydrogen Energy in the Russian Federation until 2024,” Approved by RF Government Edict No. 2634-r of October 12, 2020.
13.
Zurück zum Zitat Energy Strategy of the Russian Federation for the Period until 2035, Approved by RF Government Edict no 1523-r of June 9, 2020. Energy Strategy of the Russian Federation for the Period until 2035, Approved by RF Government Edict no 1523-r of June 9, 2020.
14.
Zurück zum Zitat GOST 31369-2008. Natural Gas. Calculation of Calorific Values, Density, Relative Density and Wobbe Index from Composition (2008). GOST 31369-2008. Natural Gas. Calculation of Calorific Values, Density, Relative Density and Wobbe Index from Composition (2008).
15.
Zurück zum Zitat GOST 17356-89. Gas, Oil Fuel and Combined Burners. Terms and Definitions (2020). GOST 17356-89. Gas, Oil Fuel and Combined Burners. Terms and Definitions (2020).
16.
Zurück zum Zitat GOST 31369-2021. Natural Gas. Calculation of Calorific Values, Mass Volume, Relative Density and Wobbe Indices from the Composition (2021). GOST 31369-2021. Natural Gas. Calculation of Calorific Values, Mass Volume, Relative Density and Wobbe Indices from the Composition (2021).
17.
Zurück zum Zitat V. A. Munts and E. Yu. Pavlyuk, Combustion and Gasification of Organic Fuels: Textbook (UrFU, Yekaterinburg, 2019) [in Russian]. V. A. Munts and E. Yu. Pavlyuk, Combustion and Gasification of Organic Fuels: Textbook (UrFU, Yekaterinburg, 2019) [in Russian].
18.
Zurück zum Zitat D. M. Khzmalyan and Ya. A. Kagan, Theory of Combustion and Combustion Devices (Energiya, Moscow, 1976) [in Russian]. D. M. Khzmalyan and Ya. A. Kagan, Theory of Combustion and Combustion Devices (Energiya, Moscow, 1976) [in Russian].
19.
Zurück zum Zitat A. S. Isserlin, Fundamentals of Gas Fuel Combustion (Nedra, Leningrad, 1980) [in Russian]. A. S. Isserlin, Fundamentals of Gas Fuel Combustion (Nedra, Leningrad, 1980) [in Russian].
20.
Zurück zum Zitat Yu. I. Tsybizov, D. D. Tyul’kin, and I. E. Vorotyntsev, “Technology of low-emission fuel combustion and the constructive design of the combustion chamber of a gas turbine plant,” Vestn. Samar. Univ. Aerokosm. Tekh., Tekhnol. Mashinostr. 19 (2), 107–120 (2020). Yu. I. Tsybizov, D. D. Tyul’kin, and I. E. Vorotyntsev, “Technology of low-emission fuel combustion and the constructive design of the combustion chamber of a gas turbine plant,” Vestn. Samar. Univ. Aerokosm. Tekh., Tekhnol. Mashinostr. 19 (2), 107–120 (2020).
Metadaten
Titel
Assessment of the Potential for Decreasing Greenhouse Gas Emission in Burning Fuels in Boilers at Thermal-Power Plants (TPP) and Boiler Houses
verfasst von
P. V. Roslyakov
B. A. Rybakov
M. A. Savitenko
I. L. Ionkin
B. Luning
Publikationsdatum
01.09.2022
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 9/2022
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S004060152209004X

Weitere Artikel der Ausgabe 9/2022

Thermal Engineering 9/2022 Zur Ausgabe

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Mathematical Model of a Steam Turbine Condenser

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Modeling of a Combined Cycle Gas Turbine (CCGT) Using an Adaptive Neuro-Fuzzy System

    Premium Partner