Skip to main content
Erschienen in: Thermal Engineering 9/2022

01.09.2022 | NUCLEAR POWER PLANTS

Simulating the Behavior of Fission Product Aerosols in the Containment

verfasst von: D. A. Nazarov, D. S. Sinitsyn, N. A. Mosunova, A. A. Sorokin

Erschienen in: Thermal Engineering | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract—

During a severe accident at an NPP involving loss of the primary coolant circuit and reactor core tightness, the majority of volatile and nonvolatile fission products are released into the containment atmosphere in the form of aerosols, the particles of which are multicomponent in composition and polydisperse in size. The particle sizes may vary from a few nanometers to several tens of micrometers. The size and mass of aerosol particles determine their lifetime in a suspended state in the atmosphere of the reactor premises. The radiation activity of particles depends on the content of radionuclides in them and is only indirectly connected with their mass and size. Therefore, in simulating the behavior of radionuclides, it is very important to take into account not only the change in the disperse characteristics of aerosol particles, e.g., their mass and size, but also the content of low- and even very low-mass but highly radioactive admixtures in the particles. The article presents a fission product aerosols' behavior model, which takes into account a change in the concentration, size, and composition of aerosols, including a change in the particle material density. The model is implemented in the fraction method approximation for a discrete mass of particles. For taking into account the effect that the composition of components has on the density of mixed aerosol material, the ideal solution approximation is considered. Test calculations for the model problem with two sources of aerosol particles having different composition and diameter in the modeled room volume were carried out. The first source consisted of CsOH particles, and the second one of UO2 particles. It is shown that it is important when simulating the behavior of multicomponent fission product aerosols in premises to take into account the change in the composition of aerosols as a result of coagulation and, as a consequence, the change in aerosol particle material density, which depends both on the composition and density of individual components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Soffer, S. B. Burson, S. M. Ferrell, R. Y. Lee, and J. N. Ridgely, Accident Source Term for Light-Water Nuclear Power Plant. Final Report, NUREG-1465 (Nuclear Regulatory Commission, Washington, DC, 1995). L. Soffer, S. B. Burson, S. M. Ferrell, R. Y. Lee, and J. N. Ridgely, Accident Source Term for Light-Water Nuclear Power Plant. Final Report, NUREG-1465 (Nuclear Regulatory Commission, Washington, DC, 1995).
2.
Zurück zum Zitat M. A. Zatevakhin, A. A. Ignat’ev, V. V. Bezlepkin, Yu. G. Leont’ev, and I. M. Ivkov, “Development of the calculation model of aerosol behavior kinetics in the containment facilities at nuclear power plants with VVER during emergencies,” Teploenergetika, No. 2, 23–27 (2007). M. A. Zatevakhin, A. A. Ignat’ev, V. V. Bezlepkin, Yu. G. Leont’ev, and I. M. Ivkov, “Development of the calculation model of aerosol behavior kinetics in the containment facilities at nuclear power plants with VVER during emergencies,” Teploenergetika, No. 2, 23–27 (2007).
5.
Zurück zum Zitat A. A. Sorokin, “Modeling the coagulation of aerosols of fission products,” At. Energy 118, 290–295 (2015).CrossRef A. A. Sorokin, “Modeling the coagulation of aerosols of fission products,” At. Energy 118, 290–295 (2015).CrossRef
6.
Zurück zum Zitat J. Y. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998). J. Y. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998).
Metadaten
Titel
Simulating the Behavior of Fission Product Aerosols in the Containment
verfasst von
D. A. Nazarov
D. S. Sinitsyn
N. A. Mosunova
A. A. Sorokin
Publikationsdatum
01.09.2022
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 9/2022
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601522090026

Weitere Artikel der Ausgabe 9/2022

Thermal Engineering 9/2022 Zur Ausgabe

HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

Modern Methods for Numerical Simulation of Radiation Heat Transfer in Selective Gases (Review)

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Mathematical Model of a Steam Turbine Condenser

    Premium Partner