Skip to main content
Erschienen in: Neural Computing and Applications 6/2013

01.05.2013 | Original Article

Associate learning and correcting in a memristive neural network

verfasst von: Ling Chen, Chuandong Li, Xin Wang, Shukai Duan

Erschienen in: Neural Computing and Applications | Ausgabe 6/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper further studies the ability of the associate learning and self-correcting in a memristive artificial neural network (ANN). Different from the existing models, the present ANN contains the multiply-threshold neurons, the discrete charge-controlled memristors, and a new learning law named the max-input-feedback (MIF). We shall demonstrate the processes of the associative learning and associative correcting via a modified Pavlov experiment where more conditioning factors are considered. We also make some comparisons of MIF with spike-timing-dependent plasticity and back-propagation and show that MIF learning law is suitable to fast learning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chua LO (1971) Memristor: the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519CrossRef Chua LO (1971) Memristor: the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519CrossRef
2.
Zurück zum Zitat Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 452(7191):80–83CrossRef Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 452(7191):80–83CrossRef
4.
Zurück zum Zitat Ventra MD, Pershin VY, Chua LO (2009) Circuit elements with memory: memristor, memcapacitors and meminductors. Proc IEEE 97(10):1717–1724CrossRef Ventra MD, Pershin VY, Chua LO (2009) Circuit elements with memory: memristor, memcapacitors and meminductors. Proc IEEE 97(10):1717–1724CrossRef
5.
Zurück zum Zitat Kim H, Sah MP, Yang C, Chua L (2010) “Memristor-based Multilevel Memory”, CNNA 2010 12th international workshop. Berkeley, CA, pp 1–6CrossRef Kim H, Sah MP, Yang C, Chua L (2010) “Memristor-based Multilevel Memory”, CNNA 2010 12th international workshop. Berkeley, CA, pp 1–6CrossRef
6.
Zurück zum Zitat Snider G (2007) Self-organized computation with unreliable memristive nanodevices. Nanotechnology 18(36):1–13CrossRef Snider G (2007) Self-organized computation with unreliable memristive nanodevices. Nanotechnology 18(36):1–13CrossRef
7.
Zurück zum Zitat Sangho S, Kyungmin K, Sung-Mo K (2011) Memristor applications for programmable analog ICs. IEEE Trans Nanotechnol 10(2):266–274CrossRef Sangho S, Kyungmin K, Sung-Mo K (2011) Memristor applications for programmable analog ICs. IEEE Trans Nanotechnol 10(2):266–274CrossRef
8.
Zurück zum Zitat Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10(4):1297–1301CrossRef Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10(4):1297–1301CrossRef
9.
Zurück zum Zitat Pershin YV, Ventra MD (2011) Neuromorphic, digital and quantum computation with memory circuit elements. arXiv:1009.6025v2, pp 1–9 Pershin YV, Ventra MD (2011) Neuromorphic, digital and quantum computation with memory circuit elements. arXiv:1009.6025v2, pp 1–9
10.
Zurück zum Zitat Pershin YV, Ventra MD (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Networks 23(7):881–886CrossRef Pershin YV, Ventra MD (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Networks 23(7):881–886CrossRef
11.
Zurück zum Zitat Itoh M, Chua LO (2009) Memristor cellular automata and memristor discrete-time cellular neural networks. Int J Bifurcation Chaos 19(11):3605–3656 Itoh M, Chua LO (2009) Memristor cellular automata and memristor discrete-time cellular neural networks. Int J Bifurcation Chaos 19(11):3605–3656
12.
Zurück zum Zitat Biolek Z, Biolek D, Biolkova V (2009) SPICE model of memristor with nonlinear dopant drift. Radio Eng 18(2):210–214 Biolek Z, Biolek D, Biolkova V (2009) SPICE model of memristor with nonlinear dopant drift. Radio Eng 18(2):210–214
13.
Zurück zum Zitat Batas D, Fiedler H (2011) A Memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans Nanotechnol 10(2):250–255CrossRef Batas D, Fiedler H (2011) A Memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans Nanotechnol 10(2):250–255CrossRef
14.
Zurück zum Zitat Shin S, Kim K, Kang S-M (2010) Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans CAD Int Circ Syst 29(4):590–598 Shin S, Kim K, Kang S-M (2010) Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans CAD Int Circ Syst 29(4):590–598
15.
Zurück zum Zitat Strukov DB, Borghetti JL, Williams RS (2009) Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9):1058–1063CrossRef Strukov DB, Borghetti JL, Williams RS (2009) Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9):1058–1063CrossRef
16.
Zurück zum Zitat Ramos CZ, Mesa LAC, Carrasco JAP, Masquelier T, Gotarredona TS, Barranco BL (2011) On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Frontiers Neurosci 5:22 Ramos CZ, Mesa LAC, Carrasco JAP, Masquelier T, Gotarredona TS, Barranco BL (2011) On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Frontiers Neurosci 5:22
17.
Zurück zum Zitat Yen G, Michel AN (1992) A learning and forgetting algorithm in associative memories: the eigenstructure method. IEEE Trans Circuits Syst 39(4):212–225MATHCrossRef Yen G, Michel AN (1992) A learning and forgetting algorithm in associative memories: the eigenstructure method. IEEE Trans Circuits Syst 39(4):212–225MATHCrossRef
18.
Zurück zum Zitat Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput Biol 3(2, e31):247–257 Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput Biol 3(2, e31):247–257
19.
Zurück zum Zitat Rumelhart DE, Hinton GE, Willians RJ (1986) Learning representations by back-propagating error. Nature 323(9):533–536CrossRef Rumelhart DE, Hinton GE, Willians RJ (1986) Learning representations by back-propagating error. Nature 323(9):533–536CrossRef
20.
Zurück zum Zitat Sinder GS (2008) Spike-timing-dependent learning in memristive nanodevices. IEEE international symposium on nanoscale architectures, Nanoarch, pp 85–92 Sinder GS (2008) Spike-timing-dependent learning in memristive nanodevices. IEEE international symposium on nanoscale architectures, Nanoarch, pp 85–92
21.
Zurück zum Zitat Masquelier T, Guyonneau R, Thorpe SJ (2009) Competitive STDP-based spike pattern learning. Neural Comput 21(5):1259–1276MATHCrossRef Masquelier T, Guyonneau R, Thorpe SJ (2009) Competitive STDP-based spike pattern learning. Neural Comput 21(5):1259–1276MATHCrossRef
22.
Zurück zum Zitat Pdeger H (1990) Properties of neural networks with multi-State Neurons. Springer, New York, pp 33–47 Pdeger H (1990) Properties of neural networks with multi-State Neurons. Springer, New York, pp 33–47
23.
Zurück zum Zitat Si J, Michael AN (1995) Analysis and synthesis of a class of discrete-time neural networks with multilevel threshold neurons. IEEE Trans Neural Netw 6(1):105–116CrossRef Si J, Michael AN (1995) Analysis and synthesis of a class of discrete-time neural networks with multilevel threshold neurons. IEEE Trans Neural Netw 6(1):105–116CrossRef
24.
Zurück zum Zitat Chang T, Jo SH, Lu W (2011) Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9):7669–7676CrossRef Chang T, Jo SH, Lu W (2011) Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9):7669–7676CrossRef
Metadaten
Titel
Associate learning and correcting in a memristive neural network
verfasst von
Ling Chen
Chuandong Li
Xin Wang
Shukai Duan
Publikationsdatum
01.05.2013
Verlag
Springer-Verlag
Erschienen in
Neural Computing and Applications / Ausgabe 6/2013
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-012-0868-7

Weitere Artikel der Ausgabe 6/2013

Neural Computing and Applications 6/2013 Zur Ausgabe

Premium Partner