Skip to main content

2018 | OriginalPaper | Buchkapitel

Associative Memory: An Spiking Neural Network Robotic Implementation

verfasst von : André Cyr, Frédéric Thériault, Matthew Ross, Sylvain Chartier

Erschienen in: Artificial General Intelligence

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article proposes a novel minimalist bio-inspired associative memory (AM) mechanism based on a spiking neural network acting as a controller in simple virtual and physical robots. As such, several main features of a general AM concept were reproduced. Using the strength of temporal coding at the single spike resolution level, this study approaches the AM phenomenon with basic examples in the visual modality. Specifically, the AM include varying time delays in synaptic links and asymmetry in the spike-timing dependent plasticity learning rules to solve visual tasks of pattern-matching, pattern-completion and noise-tolerance for autoassociative and heteroassociative memories. This preliminary work could serve as a step toward future comparative analysis with traditional artificial neural networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rolls, E.: The mechanisms for pattern completion and pattern separation in the hippocampus. Front. Syst. Neurosci. 7(74), 10–3389 (2013) Rolls, E.: The mechanisms for pattern completion and pattern separation in the hippocampus. Front. Syst. Neurosci. 7(74), 10–3389 (2013)
2.
Zurück zum Zitat Smith, D., Wessnitzer, J., Webb, B.: A model of associative learning in the mushroom body. Biol. Cybern. 99(2), 89–103 (2008)MathSciNetCrossRef Smith, D., Wessnitzer, J., Webb, B.: A model of associative learning in the mushroom body. Biol. Cybern. 99(2), 89–103 (2008)MathSciNetCrossRef
4.
Zurück zum Zitat Carpenter, G.: Neural network models for pattern recognition and associative memory. Neural Netw. 2(4), 243–257 (1989)CrossRef Carpenter, G.: Neural network models for pattern recognition and associative memory. Neural Netw. 2(4), 243–257 (1989)CrossRef
5.
Zurück zum Zitat Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)MathSciNetCrossRef Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)MathSciNetCrossRef
6.
Zurück zum Zitat Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)MathSciNetCrossRef Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)MathSciNetCrossRef
8.
Zurück zum Zitat Chartier, S., Giguère, G., Langlois, D.: A new bidirectional heteroassociative memory encompassing correlational, competitive and topological properties. Neural Netw. 22(5), 568–578 (2009)CrossRef Chartier, S., Giguère, G., Langlois, D.: A new bidirectional heteroassociative memory encompassing correlational, competitive and topological properties. Neural Netw. 22(5), 568–578 (2009)CrossRef
9.
Zurück zum Zitat Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949) Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)
10.
Zurück zum Zitat Amit, D.: The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav. Brain Sci. 18(04), 617–626 (1995)CrossRef Amit, D.: The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav. Brain Sci. 18(04), 617–626 (1995)CrossRef
11.
Zurück zum Zitat Sandberg, A., Tegnér, J., Lansner, A.: A working memory model based on fast Hebbian learning. Netw. Comput. Neural Syst. 14(4), 789–802 (2003)CrossRef Sandberg, A., Tegnér, J., Lansner, A.: A working memory model based on fast Hebbian learning. Netw. Comput. Neural Syst. 14(4), 789–802 (2003)CrossRef
12.
Zurück zum Zitat Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998) Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)
13.
Zurück zum Zitat Zhu, S., Hammerstrom, D.: Reinforcement learning in associative memory. In: International Joint Conference on Neural Networks, pp. 1346–1350 (2003) Zhu, S., Hammerstrom, D.: Reinforcement learning in associative memory. In: International Joint Conference on Neural Networks, pp. 1346–1350 (2003)
14.
Zurück zum Zitat Tangruamsub, S., Kawewong, A., Tsuboyama, M., Hasegawa, O.: Self-organizing incremental associative memory-based robot navigation. IEICE Trans. Inf. Syst. 95(10), 2415–2425 (2012)CrossRef Tangruamsub, S., Kawewong, A., Tsuboyama, M., Hasegawa, O.: Self-organizing incremental associative memory-based robot navigation. IEICE Trans. Inf. Syst. 95(10), 2415–2425 (2012)CrossRef
15.
16.
Zurück zum Zitat Zamani, M., Sadeghian, A., Chartier, S.: A bidirectional associative memory based on cortical spiking neurons using temporal coding. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010) Zamani, M., Sadeghian, A., Chartier, S.: A bidirectional associative memory based on cortical spiking neurons using temporal coding. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)
17.
Zurück zum Zitat Tan, C., Tang, H., Cheu, E., Hu, J.: A computationally efficient associative memory model of hippocampus CA3 by spiking neurons. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2013) Tan, C., Tang, H., Cheu, E., Hu, J.: A computationally efficient associative memory model of hippocampus CA3 by spiking neurons. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2013)
18.
Zurück zum Zitat Hu, J., Tang, H., Tan, K.C., Gee, S.B.: A spiking neural network model for associative memory using temporal codes. In: Handa, H., Ishibuchi, H., Ong, Y.-S., Tan, K.C. (eds.) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1. PALO, vol. 1, pp. 561–572. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13359-1_43CrossRef Hu, J., Tang, H., Tan, K.C., Gee, S.B.: A spiking neural network model for associative memory using temporal codes. In: Handa, H., Ishibuchi, H., Ong, Y.-S., Tan, K.C. (eds.) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1. PALO, vol. 1, pp. 561–572. Springer, Cham (2015). https://​doi.​org/​10.​1007/​978-3-319-13359-1_​43CrossRef
19.
Zurück zum Zitat Komer, B., Eliasmith, C.: A unified theoretical approach for biological cognition and learning. Curr. Opin. Behav. Sci. 11, 14–20 (2016)CrossRef Komer, B., Eliasmith, C.: A unified theoretical approach for biological cognition and learning. Curr. Opin. Behav. Sci. 11, 14–20 (2016)CrossRef
20.
Zurück zum Zitat Touzet, C.: Modeling and simulation of elementary robot behaviors using associative memories. Int. J. Adv. Robot. Syst. 3(2), 165–170 (2006)CrossRef Touzet, C.: Modeling and simulation of elementary robot behaviors using associative memories. Int. J. Adv. Robot. Syst. 3(2), 165–170 (2006)CrossRef
21.
Zurück zum Zitat Jimenez-Romero, C., Sousa-Rodrigues, D., Johnson, J.: Designing behaviour in bio-inspired robots using associative topologies of spiking-neural-networks. arXiv preprint arXiv:1509.07035 (2015) Jimenez-Romero, C., Sousa-Rodrigues, D., Johnson, J.: Designing behaviour in bio-inspired robots using associative topologies of spiking-neural-networks. arXiv preprint arXiv:​1509.​07035 (2015)
22.
Zurück zum Zitat Sommer, F., Wennekers, T.: Associative memory in networks of spiking neurons. Neural Netw. 14(6), 825–834 (2001)CrossRef Sommer, F., Wennekers, T.: Associative memory in networks of spiking neurons. Neural Netw. 14(6), 825–834 (2001)CrossRef
23.
Zurück zum Zitat Yu, Q., Tang, H., Tan, K., Yu, H.: A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 138, 3–13 (2014)CrossRef Yu, Q., Tang, H., Tan, K., Yu, H.: A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 138, 3–13 (2014)CrossRef
24.
Zurück zum Zitat Knight, J., al.: Efficient SpiNNaker simulation of a heteroassociative memory using the neural engineering framework. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 5210–5217, July 2016 Knight, J., al.: Efficient SpiNNaker simulation of a heteroassociative memory using the neural engineering framework. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 5210–5217, July 2016
25.
Zurück zum Zitat Shouval, H., Kalantzis, G.: Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J. Neurophysiol. 93(2), 1069–1073 (2005)CrossRef Shouval, H., Kalantzis, G.: Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J. Neurophysiol. 93(2), 1069–1073 (2005)CrossRef
26.
Zurück zum Zitat Bugmann, G., Christodoulou, C.: Learning temporal correlation between input neurons by using Dendritic propagation delays and stochastic synapses. In: Fourth Neural Coding Workshop. pp. 10–15. Citeseer (2001) Bugmann, G., Christodoulou, C.: Learning temporal correlation between input neurons by using Dendritic propagation delays and stochastic synapses. In: Fourth Neural Coding Workshop. pp. 10–15. Citeseer (2001)
27.
Zurück zum Zitat Panchev, C., Wermter, S.: Temporal sequence detection with spiking neurons: towards recognizing robot language instructions. Connect. Sci. 18(1), 1–22 (2006)CrossRef Panchev, C., Wermter, S.: Temporal sequence detection with spiking neurons: towards recognizing robot language instructions. Connect. Sci. 18(1), 1–22 (2006)CrossRef
28.
Zurück zum Zitat Bi, G., Poo, M.: Activity-induced synaptic modifications in Hippocampal culture: dependence on spike timing, synaptic strength and cell type. J. Neurosci. 18, 10464–10472 (1998)CrossRef Bi, G., Poo, M.: Activity-induced synaptic modifications in Hippocampal culture: dependence on spike timing, synaptic strength and cell type. J. Neurosci. 18, 10464–10472 (1998)CrossRef
29.
Zurück zum Zitat Froemke, R., Dan, Y.: Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416(6879), 433–438 (2002)CrossRef Froemke, R., Dan, Y.: Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416(6879), 433–438 (2002)CrossRef
30.
Zurück zum Zitat Caporale, N., Dan, Y.: Spike timing-dependent plasticity: a Hebbian learning rule. Ann. Rev. Neurosci. 31, 25–46 (2008)CrossRef Caporale, N., Dan, Y.: Spike timing-dependent plasticity: a Hebbian learning rule. Ann. Rev. Neurosci. 31, 25–46 (2008)CrossRef
31.
Zurück zum Zitat Cyr, A., Boukadoum, M.: Classical conditioning in different temporal constraints: an STDP learning rule for robots controlled by spiking neural networks. Adapt. Behav. 20, 257–272 (2012)CrossRef Cyr, A., Boukadoum, M.: Classical conditioning in different temporal constraints: an STDP learning rule for robots controlled by spiking neural networks. Adapt. Behav. 20, 257–272 (2012)CrossRef
32.
Zurück zum Zitat Bi, G., Wang, H.: Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiol. Behav. 77(4), 551–555 (2002)CrossRef Bi, G., Wang, H.: Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiol. Behav. 77(4), 551–555 (2002)CrossRef
33.
Zurück zum Zitat Cyr, A., Boukadoum, M., Poirier, P.: AI-SIMCOG: a simulator for spiking neurons and multiple animats behaviours. Neural Comput. Appl. 18(5), 431–446 (2009)CrossRef Cyr, A., Boukadoum, M., Poirier, P.: AI-SIMCOG: a simulator for spiking neurons and multiple animats behaviours. Neural Comput. Appl. 18(5), 431–446 (2009)CrossRef
34.
Zurück zum Zitat Ardiel, E., Rankin, C.: An elegant mind: learning and memory in Caenorhabditis elegans. Learn. Mem. 17(4), 191–201 (2010)CrossRef Ardiel, E., Rankin, C.: An elegant mind: learning and memory in Caenorhabditis elegans. Learn. Mem. 17(4), 191–201 (2010)CrossRef
35.
Zurück zum Zitat Hawkins, R., Byrne, J.: Associative learning in invertebrates. Cold Spring Harb. Perspect. Biol. 7(5), a021709 (2015)CrossRef Hawkins, R., Byrne, J.: Associative learning in invertebrates. Cold Spring Harb. Perspect. Biol. 7(5), a021709 (2015)CrossRef
36.
Zurück zum Zitat Lukowiak, K., et al.: Associative learning and memory in Lymnaea stagnalis: how well do they remember? J. Exp. Biol. 206(13), 2097–2103 (2003)CrossRef Lukowiak, K., et al.: Associative learning and memory in Lymnaea stagnalis: how well do they remember? J. Exp. Biol. 206(13), 2097–2103 (2003)CrossRef
37.
Zurück zum Zitat Siwicki, K., Ladewski, L.: Associative learning and memory in Drosophila: beyond olfactory conditioning. Behav. Process. 64(2), 225–238 (2003)CrossRef Siwicki, K., Ladewski, L.: Associative learning and memory in Drosophila: beyond olfactory conditioning. Behav. Process. 64(2), 225–238 (2003)CrossRef
38.
Zurück zum Zitat Avarguès-Weber, A., Giurfa, M.: Conceptual learning by miniature brains. Proc. R. Soc. Lond. B Biol. Sci. 280(1772), 20131907 (2013)CrossRef Avarguès-Weber, A., Giurfa, M.: Conceptual learning by miniature brains. Proc. R. Soc. Lond. B Biol. Sci. 280(1772), 20131907 (2013)CrossRef
39.
Zurück zum Zitat Bianco, I., Kampff, A., Engert, F.: Prey capture behavior evoked by simple visual stimuli in Larval Zebrafish. Front. Syst. Neurosci. 5, 101 (2011)CrossRef Bianco, I., Kampff, A., Engert, F.: Prey capture behavior evoked by simple visual stimuli in Larval Zebrafish. Front. Syst. Neurosci. 5, 101 (2011)CrossRef
40.
Zurück zum Zitat Giurfa, M.: Cognition with few neurons: higher-order learning in insects. Trends Neurosci. 36(5), 285–294 (2013)CrossRef Giurfa, M.: Cognition with few neurons: higher-order learning in insects. Trends Neurosci. 36(5), 285–294 (2013)CrossRef
Metadaten
Titel
Associative Memory: An Spiking Neural Network Robotic Implementation
verfasst von
André Cyr
Frédéric Thériault
Matthew Ross
Sylvain Chartier
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-97676-1_4

Premium Partner