Skip to main content
Erschienen in: Experimental Mechanics 5/2018

09.02.2018

Asymptotical Correction to Bottom Substrate Effect Arising in AFM Indentation of Thin Samples and Adherent Cells Using Conical Tips

verfasst von: V. Managuli, S. Roy

Erschienen in: Experimental Mechanics | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The bottom substrate effect is one of the major sources of error in force map studies of adherent cells and thin soft samples in an atomic force microscope (AFM)-based force spectroscopy. Because of this, samples appear stiffer than the natural. The popular Sneddon’s contact model, which assumes the sample as infinitely thick, fails to correct this error. In the present work, a simple asymptotically correct analytical correction to the bottom substrate effect is derived through contact mechanics approach and later the model is experimentally validated on a wide range of thickness of soft polyacrylamide gel and on adherent cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kurland NE, Drira Z, Yadavalli VK (2012) Measurement of nanomechanical properties of biomolecules using atomic force microscopy. Micron 43(2):116–128CrossRef Kurland NE, Drira Z, Yadavalli VK (2012) Measurement of nanomechanical properties of biomolecules using atomic force microscopy. Micron 43(2):116–128CrossRef
2.
Zurück zum Zitat Pillet F, Chopinet L, Formosa C, Dague É (2014) Atomic force microscopy and pharmacology: from microbiology to cancerology. Biochimica et Biophysica Acta (BBA)-General Subjects 1840(3):1028–1050CrossRef Pillet F, Chopinet L, Formosa C, Dague É (2014) Atomic force microscopy and pharmacology: from microbiology to cancerology. Biochimica et Biophysica Acta (BBA)-General Subjects 1840(3):1028–1050CrossRef
3.
Zurück zum Zitat Morton KC, Baker LA (2014) Atomic force microscopy-based bioanalysis for the study of disease. Anal Methods 6(14):4932–4955CrossRef Morton KC, Baker LA (2014) Atomic force microscopy-based bioanalysis for the study of disease. Anal Methods 6(14):4932–4955CrossRef
4.
Zurück zum Zitat Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater 55(12):3989–4014CrossRef Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater 55(12):3989–4014CrossRef
5.
Zurück zum Zitat Cross SE, Jin YS, Tondre J, Wong R, Rao J, Gimzewski JK (2008) AFM-based analysis of human metastatic cancer cells. Nanotechnology 19(38):384003CrossRef Cross SE, Jin YS, Tondre J, Wong R, Rao J, Gimzewski JK (2008) AFM-based analysis of human metastatic cancer cells. Nanotechnology 19(38):384003CrossRef
6.
Zurück zum Zitat Lal R, Arnsdorf MF (2010) Multidimensional atomic force microscopy for drug discovery: a versatile tool for defining targets, designing therapeutics and monitoring their efficacy. Life Sci 86(15):545–562CrossRef Lal R, Arnsdorf MF (2010) Multidimensional atomic force microscopy for drug discovery: a versatile tool for defining targets, designing therapeutics and monitoring their efficacy. Life Sci 86(15):545–562CrossRef
7.
Zurück zum Zitat Sitterberg J, Özcetin A, Ehrhardt C, Bakowsky U (2010) Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. Eur J Pharm Biopharm 74(1):2–13CrossRef Sitterberg J, Özcetin A, Ehrhardt C, Bakowsky U (2010) Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. Eur J Pharm Biopharm 74(1):2–13CrossRef
8.
Zurück zum Zitat Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge
9.
Zurück zum Zitat Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57MathSciNetCrossRefMATH Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57MathSciNetCrossRefMATH
10.
11.
Zurück zum Zitat Brisc J, Sebastian KS, Adams MJ (1994) The effect of indenter geometry on the elastic response to indentation. J Phys D Appl Phys 27(6):1156CrossRef Brisc J, Sebastian KS, Adams MJ (1994) The effect of indenter geometry on the elastic response to indentation. J Phys D Appl Phys 27(6):1156CrossRef
12.
Zurück zum Zitat Rico F, Roca-Cusachs P, Gavara N, Farré R, Rotger M, Navajas D (2005) Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys Rev E 72(2):021914CrossRef Rico F, Roca-Cusachs P, Gavara N, Farré R, Rotger M, Navajas D (2005) Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys Rev E 72(2):021914CrossRef
13.
Zurück zum Zitat Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. In proceedings of the Royal Society of London a: mathematical. Phys Eng Sci 324(1558):301–313CrossRef Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. In proceedings of the Royal Society of London a: mathematical. Phys Eng Sci 324(1558):301–313CrossRef
14.
Zurück zum Zitat Sirghi L, Ponti J, Broggi F, Rossi F (2008) Probing elasticity and adhesion of live cells by atomic force microscopy indentation. Eur Biophys J 37(6):935–945CrossRef Sirghi L, Ponti J, Broggi F, Rossi F (2008) Probing elasticity and adhesion of live cells by atomic force microscopy indentation. Eur Biophys J 37(6):935–945CrossRef
15.
Zurück zum Zitat Sirghi L (2010) Atomic force microscopy indentation of living cells. Microscopy: science, technology. Applications and Education, Formatex, Badajoz, p 433–440 Sirghi L (2010) Atomic force microscopy indentation of living cells. Microscopy: science, technology. Applications and Education, Formatex, Badajoz, p 433–440
16.
Zurück zum Zitat Domke J, Radmacher M (1998) Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14(12):3320–3325CrossRef Domke J, Radmacher M (1998) Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14(12):3320–3325CrossRef
17.
Zurück zum Zitat Costa KD, Yin FCP (1999) Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J Biomech Eng 121:462–471CrossRef Costa KD, Yin FCP (1999) Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J Biomech Eng 121:462–471CrossRef
18.
Zurück zum Zitat Almqvist N, Bhatia R, Primbs G, Desai N, Banerjee S, Lal R (2004) Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys J 86(3):1753–1762CrossRef Almqvist N, Bhatia R, Primbs G, Desai N, Banerjee S, Lal R (2004) Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys J 86(3):1753–1762CrossRef
19.
Zurück zum Zitat Hansen JC, Lim JY, Xu LC, Siedlecki CA, Mauger DT, Donahue HJ (2007) Effect of surface nanoscale topography on elastic modulus of individual osteoblastic cells as determined by atomic force microscopy. J Biomech 40(13):2865–2871CrossRef Hansen JC, Lim JY, Xu LC, Siedlecki CA, Mauger DT, Donahue HJ (2007) Effect of surface nanoscale topography on elastic modulus of individual osteoblastic cells as determined by atomic force microscopy. J Biomech 40(13):2865–2871CrossRef
20.
Zurück zum Zitat Wagh AA, Roan E, Chapman KE, Desai LP, Rendon DA, Eckstein EC, Waters CM (2008) Localized elasticity measured in epithelial cells migrating at a wound edge using atomic force microscopy. American journal of physiology-lung cellular and molecular. Physiology 295(1):L54–L60 Wagh AA, Roan E, Chapman KE, Desai LP, Rendon DA, Eckstein EC, Waters CM (2008) Localized elasticity measured in epithelial cells migrating at a wound edge using atomic force microscopy. American journal of physiology-lung cellular and molecular. Physiology 295(1):L54–L60
21.
Zurück zum Zitat Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi T (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82(1):253–258CrossRef Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi T (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82(1):253–258CrossRef
22.
Zurück zum Zitat Wang B, Guo P, Auguste DT (2015) Mapping the CXCR4 receptor on breast cancer cells. Biomaterials 57:161–168CrossRef Wang B, Guo P, Auguste DT (2015) Mapping the CXCR4 receptor on breast cancer cells. Biomaterials 57:161–168CrossRef
23.
Zurück zum Zitat Li QS, Lee GYH, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374(4):609–613CrossRef Li QS, Lee GYH, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374(4):609–613CrossRef
24.
Zurück zum Zitat Efremov YM, Dokrunova AA, Bagrov DV, Kudryashova KS, Sokolova OS, Shaitan KV (2013) The effects of confluency on cell mechanical properties. J Biomech 46(6):1081–1087CrossRef Efremov YM, Dokrunova AA, Bagrov DV, Kudryashova KS, Sokolova OS, Shaitan KV (2013) The effects of confluency on cell mechanical properties. J Biomech 46(6):1081–1087CrossRef
25.
Zurück zum Zitat Crick SL, Yin FCP (2007) Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point. Biomech Model Mechanobiol 6(3):199–210CrossRef Crick SL, Yin FCP (2007) Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point. Biomech Model Mechanobiol 6(3):199–210CrossRef
26.
Zurück zum Zitat Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5):2798–2810CrossRef Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5):2798–2810CrossRef
27.
Zurück zum Zitat Santos JAC, Rebelo LM, Araujo AC, Barros EB, de Sousa JS (2012) Thickness-corrected model for nanoindentation of thin films with conical indenters. Soft Matter 8(16):4441–4448CrossRef Santos JAC, Rebelo LM, Araujo AC, Barros EB, de Sousa JS (2012) Thickness-corrected model for nanoindentation of thin films with conical indenters. Soft Matter 8(16):4441–4448CrossRef
28.
Zurück zum Zitat Gavara N, Chadwick RS (2012) Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat Nanotechnol 7(11):733–736CrossRef Gavara N, Chadwick RS (2012) Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat Nanotechnol 7(11):733–736CrossRef
29.
Zurück zum Zitat Gavara N (2016) Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells. Sci Rep 6:21267CrossRef Gavara N (2016) Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells. Sci Rep 6:21267CrossRef
30.
Zurück zum Zitat Gavara N, Chadwick RS (2016) Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging. Biomech Model Mechanobiol 15(3):511–523CrossRef Gavara N, Chadwick RS (2016) Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging. Biomech Model Mechanobiol 15(3):511–523CrossRef
31.
Zurück zum Zitat Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. Current protocols in cell biology 47:10.16CrossRef Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. Current protocols in cell biology 47:10.16CrossRef
32.
Zurück zum Zitat Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci 94(25):13661–13665CrossRef Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci 94(25):13661–13665CrossRef
33.
Zurück zum Zitat Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64(7):1868–1873CrossRef Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64(7):1868–1873CrossRef
34.
Zurück zum Zitat Darling EM, Zauscher S, Block JA, Guilak F (2007) A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys J 92(5):1784–1791CrossRef Darling EM, Zauscher S, Block JA, Guilak F (2007) A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys J 92(5):1784–1791CrossRef
35.
Zurück zum Zitat MATLAB and StatisticsToolbox (2014) The MathWorks Inc. Natick, Massachusetts MATLAB and StatisticsToolbox (2014) The MathWorks Inc. Natick, Massachusetts
36.
Zurück zum Zitat Managuli V, Roy S (2017) Influencing factors in atomic force microscopy based mechanical characterization of biological cells. Exp Tech 41:673–687CrossRef Managuli V, Roy S (2017) Influencing factors in atomic force microscopy based mechanical characterization of biological cells. Exp Tech 41:673–687CrossRef
Metadaten
Titel
Asymptotical Correction to Bottom Substrate Effect Arising in AFM Indentation of Thin Samples and Adherent Cells Using Conical Tips
verfasst von
V. Managuli
S. Roy
Publikationsdatum
09.02.2018
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 5/2018
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-018-0373-8

Weitere Artikel der Ausgabe 5/2018

Experimental Mechanics 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.