Skip to main content

2021 | OriginalPaper | Buchkapitel

Atomic Layer Deposition and Atomic Layer Etching—An Overview of Selective Processes

verfasst von : Samiha Hossain, Oktay H. Gokce, N. M. Ravindra

Erschienen in: TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The continued evolution in nanoelectronics and nanophotonics has been made possible by the recent developments in Atomic Layer Deposition and Atomic Layer Etching. While uniform deposition of conformal films with controllable thickness is a key feature of Atomic Layer Deposition, Atomic Layer Etching offers the advantages of controlled removal of chemically modified areas. Various case studies of the applications of these technologies in dielectrics, metals and diffusion barriers will be discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khan R et al (2018) Area-selective atomic layer deposition using Si precursors as inhibitors. Chem Mater 30(21):7603–7610 Khan R et al (2018) Area-selective atomic layer deposition using Si precursors as inhibitors. Chem Mater 30(21):7603–7610
6.
Zurück zum Zitat Lin K-Y et al (2020) Selective atomic layer etching of HfO2 over silicon by precursor and substrate-dependent selective deposition. J Vac Sci Technol, A 38(3):032601 Lin K-Y et al (2020) Selective atomic layer etching of HfO2 over silicon by precursor and substrate-dependent selective deposition. J Vac Sci Technol, A 38(3):032601
7.
Zurück zum Zitat Haider A et al (2016) Area-selective atomic layer deposition using an inductively coupled plasma polymerized fluorocarbon layer: a case study for metal oxides. J Phys Chem C 120(46):26393–26401 Haider A et al (2016) Area-selective atomic layer deposition using an inductively coupled plasma polymerized fluorocarbon layer: a case study for metal oxides. J Phys Chem C 120(46):26393–26401
8.
Zurück zum Zitat Lemaire PC et al (2016) Understanding inherent substrate selectivity during atomic layer deposition: effect of surface preparation, hydroxyl density, and metal oxide composition on nucleation mechanisms during tungsten ALD. J Chem Phys 146(5):052811 Lemaire PC et al (2016) Understanding inherent substrate selectivity during atomic layer deposition: effect of surface preparation, hydroxyl density, and metal oxide composition on nucleation mechanisms during tungsten ALD. J Chem Phys 146(5):052811
9.
Zurück zum Zitat Mameli A et al (2017) Area-selective atomic layer deposition of SiO2 using acetylacetone as a chemoselective inhibitor in an ABC-type cycle. ACS Nano 11(9):9303–9311 Mameli A et al (2017) Area-selective atomic layer deposition of SiO2 using acetylacetone as a chemoselective inhibitor in an ABC-type cycle. ACS Nano 11(9):9303–9311
10.
Zurück zum Zitat Stevens E et al (2018) Area-selective atomic layer deposition of TiN, TiO2, and HfO2 on silicon nitride with inhibition on amorphous carbon. Chem Mater 30(10):3223–3232 Stevens E et al (2018) Area-selective atomic layer deposition of TiN, TiO2, and HfO2 on silicon nitride with inhibition on amorphous carbon. Chem Mater 30(10):3223–3232
11.
Zurück zum Zitat Leskelä M, Ritala M (2003) Atomic layer deposition chemistry: recent developments and future challenges. Angew Chem Int Ed 42(45):5548–5554 Leskelä M, Ritala M (2003) Atomic layer deposition chemistry: recent developments and future challenges. Angew Chem Int Ed 42(45):5548–5554
12.
Zurück zum Zitat Chen R et al (2005) Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification. Appl Phys Lett 86(19):191910 Chen R et al (2005) Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification. Appl Phys Lett 86(19):191910
13.
Zurück zum Zitat Färm E et al (2006) Self-assembled octadecyltrimethoxysilane monolayers enabling selective-area atomic layer deposition of iridium. Chem Vap Deposition 12(7):415–417 Färm E et al (2006) Self-assembled octadecyltrimethoxysilane monolayers enabling selective-area atomic layer deposition of iridium. Chem Vap Deposition 12(7):415–417
14.
Zurück zum Zitat Ras RHA et al (2008) Blocking the lateral film growth at the nanoscale in area-selective atomic layer deposition. J Am Chem Soc 130(34):11252–11253 Ras RHA et al (2008) Blocking the lateral film growth at the nanoscale in area-selective atomic layer deposition. J Am Chem Soc 130(34):11252–11253
15.
Zurück zum Zitat Minaye Hashemi FS et al (2015) Self-correcting process for high quality patterning by atomic layer deposition. ACS Nano 9(9):8710–8717 Minaye Hashemi FS et al (2015) Self-correcting process for high quality patterning by atomic layer deposition. ACS Nano 9(9):8710–8717
16.
Zurück zum Zitat Minaye Hashemi FS et al (2016) Selective deposition of dielectrics: limits and advantages of alkanethiol blocking agents on metal-dielectric patterns. ACS Appl Mater Interfaces 8(48):33264–33272 Minaye Hashemi FS et al (2016) Selective deposition of dielectrics: limits and advantages of alkanethiol blocking agents on metal-dielectric patterns. ACS Appl Mater Interfaces 8(48):33264–33272
17.
Zurück zum Zitat Hashemi FSM, Bent SF (2016) Sequential regeneration of self-assembled monolayers for highly selective atomic layer deposition. Adv Mater Interfaces 3(21):1600464 Hashemi FSM, Bent SF (2016) Sequential regeneration of self-assembled monolayers for highly selective atomic layer deposition. Adv Mater Interfaces 3(21):1600464
18.
Zurück zum Zitat Closser RG et al (2017) Correcting defects in area selective molecular layer deposition. J Vac Sci Technol, A 35(3):031509 Closser RG et al (2017) Correcting defects in area selective molecular layer deposition. J Vac Sci Technol, A 35(3):031509
19.
Zurück zum Zitat Heyne MH et al (2016) Two-dimensional WS2nanoribbon deposition by conversion of pre-patterned amorphous silicon. Nanotechnology 28(4):04LT01 Heyne MH et al (2016) Two-dimensional WS2nanoribbon deposition by conversion of pre-patterned amorphous silicon. Nanotechnology 28(4):04LT01
20.
Zurück zum Zitat Delabie A et al (2015) Low temperature deposition of 2D WS2 layers from WF6 and H2S precursors: impact of reducing agents. Chem Commun 51(86):15692–15695 Delabie A et al (2015) Low temperature deposition of 2D WS2 layers from WF6 and H2S precursors: impact of reducing agents. Chem Commun 51(86):15692–15695
21.
Zurück zum Zitat Mackus AJM (2018) Approaches and opportunities for area-selective atomic layer deposition. 2018 Int Symp VLSI Technol Syst Appl (VLSI-TSA) Mackus AJM (2018) Approaches and opportunities for area-selective atomic layer deposition. 2018 Int Symp VLSI Technol Syst Appl (VLSI-TSA)
22.
Zurück zum Zitat Mameli A et al (2017) (Invited) Area-selective atomic layer deposition: role of surface chemistry. ECS Trans 80(3):39–48 Mameli A et al (2017) (Invited) Area-selective atomic layer deposition: role of surface chemistry. ECS Trans 80(3):39–48
23.
Zurück zum Zitat Vos MFJ et al (2019) Area-selective deposition of ruthenium by combining atomic layer deposition and selective etching. Chem Mater 31(11):3878–3882 Vos MFJ et al (2019) Area-selective deposition of ruthenium by combining atomic layer deposition and selective etching. Chem Mater 31(11):3878–3882
24.
Zurück zum Zitat Vallat R et al (2019) Area selective deposition of TiO2 by intercalation of plasma etching cycles in PEALD process: a bottom up approach for the simplification of 3D integration scheme. J Vac Sci Technol, A 37(2):020918 Vallat R et al (2019) Area selective deposition of TiO2 by intercalation of plasma etching cycles in PEALD process: a bottom up approach for the simplification of 3D integration scheme. J Vac Sci Technol, A 37(2):020918
25.
Zurück zum Zitat Song SK et al (2019) Integrated isothermal atomic layer deposition/atomic layer etching supercycles for area-selective deposition of TiO2. Chem Mater 31(13):4793–4804 Song SK et al (2019) Integrated isothermal atomic layer deposition/atomic layer etching supercycles for area-selective deposition of TiO2. Chem Mater 31(13):4793–4804
26.
Zurück zum Zitat Huard CM et al (2018) Transient behavior in quasi-atomic layer etching of silicon dioxide and silicon nitride in fluorocarbon plasmas. J Vac Sci Technol, A 36(6):06B101 Huard CM et al (2018) Transient behavior in quasi-atomic layer etching of silicon dioxide and silicon nitride in fluorocarbon plasmas. J Vac Sci Technol, A 36(6):06B101
27.
Zurück zum Zitat Martin RM, Chang JP (2009) Plasma etching of Hf-based high-k thin films. Part I. Effect of complex ions and radicals on the surface reactions. J Vac Sci Technol, A 27(2):209–216 Martin RM, Chang JP (2009) Plasma etching of Hf-based high-k thin films. Part I. Effect of complex ions and radicals on the surface reactions. J Vac Sci Technol, A 27(2):209–216
28.
Zurück zum Zitat Martin RM et al (2009) Plasma etching of Hf-based high-k thin films. Part II. Ion-enhanced surface reaction mechanisms. J Vac Sci Technol, A 27(2):217–223 Martin RM et al (2009) Plasma etching of Hf-based high-k thin films. Part II. Ion-enhanced surface reaction mechanisms. J Vac Sci Technol, A 27(2):217–223
29.
Zurück zum Zitat Marchack N, Chang JP (2012) Chemical processing of materials on silicon: more functionality, smaller features, and larger wafers. Ann Rev Chemical Biomol Eng 3(1):235–262 Marchack N, Chang JP (2012) Chemical processing of materials on silicon: more functionality, smaller features, and larger wafers. Ann Rev Chemical Biomol Eng 3(1):235–262
30.
Zurück zum Zitat Hélot M et al (2005) Plasma etching of HfO2 at elevated temperatures in chlorine-based chemistry. J Vac Sci Technol, A 24(1):30–40 Hélot M et al (2005) Plasma etching of HfO2 at elevated temperatures in chlorine-based chemistry. J Vac Sci Technol, A 24(1):30–40
31.
Zurück zum Zitat Bodart P et al (2012) SiCl4/Cl2 plasmas: a new chemistry to etch high-k materials selectively to Si-based materials. J Vac Sci Technol, A 30(2):020602 Bodart P et al (2012) SiCl4/Cl2 plasmas: a new chemistry to etch high-k materials selectively to Si-based materials. J Vac Sci Technol, A 30(2):020602
32.
Zurück zum Zitat Mackus AJM et al (2019) From the bottom-up: toward area-selective atomic layer deposition with high selectivity. Chem Mater 31(1):2–12 Mackus AJM et al (2019) From the bottom-up: toward area-selective atomic layer deposition with high selectivity. Chem Mater 31(1):2–12
33.
Zurück zum Zitat King MJ et al (2018) Ab initio analysis of nucleation reactions during tungsten atomic layer deposition on Si(100) and W(110) substrates. J Vac Sci Technol, A 36(6):061507 King MJ et al (2018) Ab initio analysis of nucleation reactions during tungsten atomic layer deposition on Si(100) and W(110) substrates. J Vac Sci Technol, A 36(6):061507
34.
Zurück zum Zitat Bobb-Semple D et al (2019) Area-selective atomic layer deposition assisted by self-assembled monolayers: a comparison of Cu Co, W, and Ru. Chem Mater 31(5):1635–1645 Bobb-Semple D et al (2019) Area-selective atomic layer deposition assisted by self-assembled monolayers: a comparison of Cu Co, W, and Ru. Chem Mater 31(5):1635–1645
36.
Zurück zum Zitat Yang M et al (2018) Low-resistivity α-phase tungsten films grown by hot-wire assisted atomic layer deposition in high-aspect-ratio structures. Thin Solid Films 646:199–208 Yang M et al (2018) Low-resistivity α-phase tungsten films grown by hot-wire assisted atomic layer deposition in high-aspect-ratio structures. Thin Solid Films 646:199–208
37.
Zurück zum Zitat Kalanyan B et al (2016) Using hydrogen to expand the inherent substrate selectivity window during tungsten atomic layer deposition. Chem Mater 28(1):117–126 Kalanyan B et al (2016) Using hydrogen to expand the inherent substrate selectivity window during tungsten atomic layer deposition. Chem Mater 28(1):117–126
38.
Zurück zum Zitat Tőkei Z et al (2016) On-chip interconnect trends, challenges and solutions: how to keep RC and reliability under control. In: 2016 IEEE Symposium VLSI Technology Tőkei Z et al (2016) On-chip interconnect trends, challenges and solutions: how to keep RC and reliability under control. In: 2016 IEEE Symposium VLSI Technology
39.
Zurück zum Zitat Yoon J et al (2011) Atomic layer deposition of Co using N2∕H2 plasma as a reactant. J Electrochem Soc 158(11):H1179 Yoon J et al (2011) Atomic layer deposition of Co using N2∕H2 plasma as a reactant. J Electrochem Soc 158(11):H1179
40.
Zurück zum Zitat Lee H-B-R, Kim H (2006) High-quality cobalt thin films by plasma-enhanced atomic layer deposition. Electrochem Solid-State Lett 9(11):G323 Lee H-B-R, Kim H (2006) High-quality cobalt thin films by plasma-enhanced atomic layer deposition. Electrochem Solid-State Lett 9(11):G323
41.
Zurück zum Zitat Kerrigan MM et al (2017) Low temperature, selective atomic layer deposition of cobalt metal films using Bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and alkylamine precursors. Chem Mater 29(17):7458–7466 Kerrigan MM et al (2017) Low temperature, selective atomic layer deposition of cobalt metal films using Bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and alkylamine precursors. Chem Mater 29(17):7458–7466
42.
Zurück zum Zitat Bernal-Ramos K et al (2015) Atomic layer deposition of cobalt silicide thin films studied by in situ infrared spectroscopy. Chem Mater 27(14):4943–4949 Bernal-Ramos K et al (2015) Atomic layer deposition of cobalt silicide thin films studied by in situ infrared spectroscopy. Chem Mater 27(14):4943–4949
43.
Zurück zum Zitat Lee H et al (2009) Cobalt and nickel atomic layer depositions for contact applications. In: 2009 IEEE international interconnect technology conference Lee H et al (2009) Cobalt and nickel atomic layer depositions for contact applications. In: 2009 IEEE international interconnect technology conference
44.
Zurück zum Zitat Colgan EG et al (1996) Formation and stability of silicides on polycrystalline silicon. Mater Sci Eng: R: Rep 16(2):43–96 Colgan EG et al (1996) Formation and stability of silicides on polycrystalline silicon. Mater Sci Eng: R: Rep 16(2):43–96
45.
Zurück zum Zitat Telford SG et al (1993) Chemically vapor deposited tungsten silicide films using dichlorosilane in a single-wafer reactor: growth, properties, and thermal stability. J Electrochem Soc 140(12):3689–3701 Telford SG et al (1993) Chemically vapor deposited tungsten silicide films using dichlorosilane in a single-wafer reactor: growth, properties, and thermal stability. J Electrochem Soc 140(12):3689–3701
46.
Zurück zum Zitat Saito T et al (2007) Kinetic modeling of tungsten silicide chemical vapor deposition from WF6 and Si2H6: determination of the reaction scheme and the gas-phase reaction rates. Chem Eng Sci 62(22):6403–6411 Saito T et al (2007) Kinetic modeling of tungsten silicide chemical vapor deposition from WF6 and Si2H6: determination of the reaction scheme and the gas-phase reaction rates. Chem Eng Sci 62(22):6403–6411
47.
Zurück zum Zitat Widmer AE, Fehlmann R (1986) The growth and physical properties of low pressure chemically vapour-deposited films of tantalum silicide on n+-type polycrystalline silicon. Thin Solid Films 138(1):131–140 Widmer AE, Fehlmann R (1986) The growth and physical properties of low pressure chemically vapour-deposited films of tantalum silicide on n+-type polycrystalline silicon. Thin Solid Films 138(1):131–140
48.
Zurück zum Zitat Chang KY, Pancholy RK (1981) Tantalum silicide interconnect characterization by surface analytical techniques. Appl Surface Sci 9(1):377–387 Chang KY, Pancholy RK (1981) Tantalum silicide interconnect characterization by surface analytical techniques. Appl Surface Sci 9(1):377–387
49.
Zurück zum Zitat Inoue S et al (1983) Properties of molybdenum silicide film deposited by chemical vapor deposition. J Electrochem Soc 130(7):1603–1607 Inoue S et al (1983) Properties of molybdenum silicide film deposited by chemical vapor deposition. J Electrochem Soc 130(7):1603–1607
50.
Zurück zum Zitat Yao Z et al (1999) Molybdenum silicide based materials and their properties. J Mater Eng Perform 8(3):291–304 Yao Z et al (1999) Molybdenum silicide based materials and their properties. J Mater Eng Perform 8(3):291–304
51.
Zurück zum Zitat Bocelli S et al (1995) Experimental identification of the optical phonon of CoSi2 in the infrared. Appl Surf Sci 91(1):30–33 Bocelli S et al (1995) Experimental identification of the optical phonon of CoSi2 in the infrared. Appl Surf Sci 91(1):30–33
52.
Zurück zum Zitat Hsia SL et al (1992) Resistance and structural stabilities of epitaxial CoSi2 films on (001) Si substrates. J Appl Phys 72(5):1864–1873 Hsia SL et al (1992) Resistance and structural stabilities of epitaxial CoSi2 films on (001) Si substrates. J Appl Phys 72(5):1864–1873
53.
Zurück zum Zitat Takahashi F et al (2001) Growth and characterization of CoSi2 films on Si (100) substrates. Appl Surf Sci 169–170:315–319 Takahashi F et al (2001) Growth and characterization of CoSi2 films on Si (100) substrates. Appl Surf Sci 169–170:315–319
54.
Zurück zum Zitat Wölfel M et al (1990) Optical constants of thin CoSi2 films on silicon. Appl Phys A 50(2):177–181 Wölfel M et al (1990) Optical constants of thin CoSi2 films on silicon. Appl Phys A 50(2):177–181
55.
Zurück zum Zitat Starke U et al (1998) Structure of epitaxial CoSi2 films on Si(111) studied with low-energy electron diffraction (LEED). Surf Rev Lett 05(01):139–144 Starke U et al (1998) Structure of epitaxial CoSi2 films on Si(111) studied with low-energy electron diffraction (LEED). Surf Rev Lett 05(01):139–144
56.
Zurück zum Zitat Bernasconi R, Magagnin L (2018) Review—ruthenium as diffusion barrier layer in electronic interconnects: current literature with a focus on electrochemical deposition methods. J Electrochem Soc 166(1):D3219–D3225 Bernasconi R, Magagnin L (2018) Review—ruthenium as diffusion barrier layer in electronic interconnects: current literature with a focus on electrochemical deposition methods. J Electrochem Soc 166(1):D3219–D3225
57.
Zurück zum Zitat Arunagiri TN et al (2005) 5nm ruthenium thin film as a directly plateable copper diffusion barrier. Appl Phys Lett 86(8):083104 Arunagiri TN et al (2005) 5nm ruthenium thin film as a directly plateable copper diffusion barrier. Appl Phys Lett 86(8):083104
58.
Zurück zum Zitat Damayanti M et al (2006) Effects of dissolved nitrogen in improving barrier properties of ruthenium. Appl Phys Lett 88(4):044101 Damayanti M et al (2006) Effects of dissolved nitrogen in improving barrier properties of ruthenium. Appl Phys Lett 88(4):044101
59.
Zurück zum Zitat Choi BH et al (2010) Preparation of Ru thin film layer on Si and TaN/Si as diffusion barrier by plasma enhanced atomic layer deposition. Microelectron Eng 87(5):1391–1395 Choi BH et al (2010) Preparation of Ru thin film layer on Si and TaN/Si as diffusion barrier by plasma enhanced atomic layer deposition. Microelectron Eng 87(5):1391–1395
60.
Zurück zum Zitat Xie Q et al (2009) Ru thin film grown on TaN by plasma enhanced atomic layer deposition. Thin Solid Films 517(16):4689–4693 Xie Q et al (2009) Ru thin film grown on TaN by plasma enhanced atomic layer deposition. Thin Solid Films 517(16):4689–4693
61.
Zurück zum Zitat Ovanesyan RA et al (2019) Atomic layer deposition of silicon-based dielectrics for semiconductor manufacturing: current status and future outlook. J Vac Sci Technol, A 37(6):060904 Ovanesyan RA et al (2019) Atomic layer deposition of silicon-based dielectrics for semiconductor manufacturing: current status and future outlook. J Vac Sci Technol, A 37(6):060904
62.
Zurück zum Zitat Park J-M et al (2016) Plasma-enhanced atomic layer deposition of silicon nitride using a novel silylamine precursor. ACS Appl Mater Interfaces 8(32):20865–20871 Park J-M et al (2016) Plasma-enhanced atomic layer deposition of silicon nitride using a novel silylamine precursor. ACS Appl Mater Interfaces 8(32):20865–20871
63.
Zurück zum Zitat Shin D et al (2018) Plasma-enhanced atomic layer deposition of low temperature silicon dioxide films using di-isopropylaminosilane as a precursor. Thin Solid Films 660:572–577 Shin D et al (2018) Plasma-enhanced atomic layer deposition of low temperature silicon dioxide films using di-isopropylaminosilane as a precursor. Thin Solid Films 660:572–577
64.
Zurück zum Zitat Lee Y-S et al (2017) Low temperature atomic layer deposition of SiO2 thin films using di-isopropylaminosilane and ozone. Ceram Int 43(2):2095–2099 Lee Y-S et al (2017) Low temperature atomic layer deposition of SiO2 thin films using di-isopropylaminosilane and ozone. Ceram Int 43(2):2095–2099
65.
Zurück zum Zitat Cui J et al (2017) Highly effective electronic passivation of silicon surfaces by atomic layer deposited hafnium oxide. Appl Phys Lett 110(2):021602 Cui J et al (2017) Highly effective electronic passivation of silicon surfaces by atomic layer deposited hafnium oxide. Appl Phys Lett 110(2):021602
66.
Zurück zum Zitat Bills B et al (2011) Effects of atomic layer deposited HfO2 compact layer on the performance of dye-sensitized solar cells. Thin Solid Films 519(22):7803–7808 Bills B et al (2011) Effects of atomic layer deposited HfO2 compact layer on the performance of dye-sensitized solar cells. Thin Solid Films 519(22):7803–7808
67.
Zurück zum Zitat Oudot E et al (2017) Hydrogen passivation of silicon/silicon oxide interface by atomic layer deposited hafnium oxide and impact of silicon oxide underlayer. J Vac Sci Technol, A 36(1):01A116 Oudot E et al (2017) Hydrogen passivation of silicon/silicon oxide interface by atomic layer deposited hafnium oxide and impact of silicon oxide underlayer. J Vac Sci Technol, A 36(1):01A116
Metadaten
Titel
Atomic Layer Deposition and Atomic Layer Etching—An Overview of Selective Processes
verfasst von
Samiha Hossain
Oktay H. Gokce
N. M. Ravindra
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65261-6_20

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.