Skip to main content
Erschienen in: Strength of Materials 2/2018

22.05.2018

Austenite Grain Growth Behavior of 20Mn5 Steel Used for Heavy Hydro-Generator Shaft

verfasst von: M. Liu, Q. X. Ma

Erschienen in: Strength of Materials | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wears resistance. Some researches about its hot deformation and recrystallization behavior were reported. However, the austenite grain growth behavior of 20Mn5 steel when heated under high temperature was not studied. The austenite grain growth behavior determines the grain size of steel ingot before hot forging and has a great influence on the microstructure evolution during hot forging. In this study, samples from 20Mn5 hollow steel ingot are heated to different temperatures of 850, 900, 950, 1000, 1050, 1100, 1150, and 1200°C and held for different times of 1, 3, 5, 7, 9, and 11 h before being quenched with water. The experimental results show that the austenite grain size increases with increasing temperature and holding time. When heating temperature ranges from 850 to 1050°C, the growth velocity of austenite grain is small; when heating temperature ranges from 1050 to 1200°C, the growth velocity of austenite grain increases remarkably. A two-stage grain growth model is established to predict the austenite grain size after holding under high temperature. The predicted austenite grain sizes are in good agreement with the experimental ones, which indicates that the model is reliable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. A. Beck, J. C. Kremer, L. J. Demer, and M. L. Holzworth, “Grain growth in high-purity aluminum and in an aluminum-magnesium alloy,” Trans. AIME, 175, 372–400 (1948). P. A. Beck, J. C. Kremer, L. J. Demer, and M. L. Holzworth, “Grain growth in high-purity aluminum and in an aluminum-magnesium alloy,” Trans. AIME, 175, 372–400 (1948).
2.
Zurück zum Zitat P. A. Beck, M. L. Holzworth, and H. Hu, “Instantaneous rates of grain growth,” Phys. Rev., 73, 526–527 (1948).CrossRef P. A. Beck, M. L. Holzworth, and H. Hu, “Instantaneous rates of grain growth,” Phys. Rev., 73, 526–527 (1948).CrossRef
3.
Zurück zum Zitat D. Turnbull, “Theory of grain boundary migration rates,” Trans. AIME, 191, 661–665 (1951). D. Turnbull, “Theory of grain boundary migration rates,” Trans. AIME, 191, 661–665 (1951).
4.
Zurück zum Zitat M. Hillert, “On the theory of normal and abnormal grain growth,” Acta. Metall., 13, No. 3, 227–238 (1965).CrossRef M. Hillert, “On the theory of normal and abnormal grain growth,” Acta. Metall., 13, No. 3, 227–238 (1965).CrossRef
5.
Zurück zum Zitat C. M. Sellars and J. A. Whiteman, “Recrystallization and grain growth in hot rolling,” Met. Sci., 13, 187–194 (1979).CrossRef C. M. Sellars and J. A. Whiteman, “Recrystallization and grain growth in hot rolling,” Met. Sci., 13, 187–194 (1979).CrossRef
6.
Zurück zum Zitat E. Anelli, “Application of mathematical modelling to hot rolling and controlled cooling of wire rods and bars,” ISIJ Int., 32, 440–449 (1992).CrossRef E. Anelli, “Application of mathematical modelling to hot rolling and controlled cooling of wire rods and bars,” ISIJ Int., 32, 440–449 (1992).CrossRef
7.
Zurück zum Zitat N. Raghunathan and T. Sheppard, “Microstructural development during annealing of hot rolled Al–Mg alloys,” Mater. Sci. Technol., 5, 542–547 (1989).CrossRef N. Raghunathan and T. Sheppard, “Microstructural development during annealing of hot rolled Al–Mg alloys,” Mater. Sci. Technol., 5, 542–547 (1989).CrossRef
8.
Zurück zum Zitat L. Q. Chen, F. L. Sui, and X. H. Liu, “Grain growth model of inconel 718 alloy forged slab in reheating process prior to rough rolling,” Acta. Metall. Sin., 45, 1242– 1248 (2009). L. Q. Chen, F. L. Sui, and X. H. Liu, “Grain growth model of inconel 718 alloy forged slab in reheating process prior to rough rolling,” Acta. Metall. Sin., 45, 1242– 1248 (2009).
9.
Zurück zum Zitat Y. W. Xu, D. Tang, Y. Song, and X. G. Pan, “Prediction model for the austenite grain growth in a hot rolled dual phase steel,” Mater. Design, 36, 275–278 (2012).CrossRef Y. W. Xu, D. Tang, Y. Song, and X. G. Pan, “Prediction model for the austenite grain growth in a hot rolled dual phase steel,” Mater. Design, 36, 275–278 (2012).CrossRef
10.
Zurück zum Zitat M. Liu and Q. X. Ma, “Research on rotatory deformation uniformity and compaction effect of super-heavy hollow steel ingot,” J. Mech. Eng., 52, 90–96 (2016).CrossRef M. Liu and Q. X. Ma, “Research on rotatory deformation uniformity and compaction effect of super-heavy hollow steel ingot,” J. Mech. Eng., 52, 90–96 (2016).CrossRef
11.
Zurück zum Zitat M. Liu, X. L. Dong, and Q. X. Ma, “Investigation on hollow steel ingot forging process of heavy cylinder forging,” J. Plast. Eng., 20, 1–8 (2013). M. Liu, X. L. Dong, and Q. X. Ma, “Investigation on hollow steel ingot forging process of heavy cylinder forging,” J. Plast. Eng., 20, 1–8 (2013).
12.
Zurück zum Zitat W. M. Mao and X. B. Zhao, Recrystallization and Grain Growth of Metal [in Chinese], Metallurgical Industry Press, Beijing, China (1994). W. M. Mao and X. B. Zhao, Recrystallization and Grain Growth of Metal [in Chinese], Metallurgical Industry Press, Beijing, China (1994).
13.
Zurück zum Zitat Q. L. Yong, The Second Phase in Steel [in Chinese], Metallurgical Industry Press, Beijing, China (2006). Q. L. Yong, The Second Phase in Steel [in Chinese], Metallurgical Industry Press, Beijing, China (2006).
14.
Zurück zum Zitat H. Pous-Romero, I. Lonardelli, D. Cogswell, and H. K. D. H. Bhadeshia, “Austenite grain growth in a nuclear pressure vessel steel,” Mater. Sci. Eng. A, 567, 72–79 (2013).CrossRef H. Pous-Romero, I. Lonardelli, D. Cogswell, and H. K. D. H. Bhadeshia, “Austenite grain growth in a nuclear pressure vessel steel,” Mater. Sci. Eng. A, 567, 72–79 (2013).CrossRef
15.
Zurück zum Zitat B. J. Lee, H. D. Kim, and J. H. Hong, “Calculation of α/γ equilibria in SA508 grade 3 steels for intercritical heat treatment,” Metall. Mat. Trans. A, 29, 1441–1447 (1998). B. J. Lee, H. D. Kim, and J. H. Hong, “Calculation of α/γ equilibria in SA508 grade 3 steels for intercritical heat treatment,” Metall. Mat. Trans. A, 29, 1441–1447 (1998).
16.
Zurück zum Zitat L. N. Duan, J. M. Wang, Q. Y. Liu, et al., “Austenite grain growth behavior of X80 pipeline steel in heating process,” J. Iron Steel Res. Int., 17, 62–66 (2010).CrossRef L. N. Duan, J. M. Wang, Q. Y. Liu, et al., “Austenite grain growth behavior of X80 pipeline steel in heating process,” J. Iron Steel Res. Int., 17, 62–66 (2010).CrossRef
17.
Zurück zum Zitat W. Li and K. Xia, “Kinetics of the grain growth in a binary Ti–44Al alloy and a ternary Ti–44Al–0.15Gd alloy,” Mater. Sci. Eng. A, 329–331, 430–434 (2002).CrossRef W. Li and K. Xia, “Kinetics of the grain growth in a binary Ti–44Al alloy and a ternary Ti–44Al–0.15Gd alloy,” Mater. Sci. Eng. A, 329–331, 430–434 (2002).CrossRef
18.
Zurück zum Zitat S. S. Zhang, M. Q. Li, Y. G. Liu, et al., “The growth behavior of austenite grain in the heating process of 300M steel,” Mater. Sci. Eng. A, 528, 4967–4972 (2011).CrossRef S. S. Zhang, M. Q. Li, Y. G. Liu, et al., “The growth behavior of austenite grain in the heating process of 300M steel,” Mater. Sci. Eng. A, 528, 4967–4972 (2011).CrossRef
19.
Zurück zum Zitat C. X. Yue, L. W. Zhang, S. L. Liao, and H. J. Gao, “Kinetic analysis of the austenite grain growth in GCr15 steel,” J. Mater. Eng. Perform., 19, 112–115 (2010).CrossRef C. X. Yue, L. W. Zhang, S. L. Liao, and H. J. Gao, “Kinetic analysis of the austenite grain growth in GCr15 steel,” J. Mater. Eng. Perform., 19, 112–115 (2010).CrossRef
Metadaten
Titel
Austenite Grain Growth Behavior of 20Mn5 Steel Used for Heavy Hydro-Generator Shaft
verfasst von
M. Liu
Q. X. Ma
Publikationsdatum
22.05.2018
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2018
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-018-9978-5

Weitere Artikel der Ausgabe 2/2018

Strength of Materials 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.