Skip to main content

2018 | OriginalPaper | Buchkapitel

Automated Fall Detection Using Computer Vision

verfasst von : Pramod Kumar Soni, Ayesha Choudhary

Erschienen in: Intelligent Human Computer Interaction

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The population of elderly people is increasing day-by-day in the world. One of the major health issues of an old person is injury during a fall and this issue becomes compounded for elderly people living alone. In this paper, we propose a novel framework for automated fall detection of a person from videos. Background subtraction is used to detect the moving person in the video. Different features are extracted by applying rectangle and ellipse on human shape to detect the fall of a person. Experiments have been carried out on the UR Fall Dataset which is publicly available. The proposed method is compared with existing methods and significantly better results are achieved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat World Health Organization. World Health Organization global report on falls prevention in older age, 2007 (2011) World Health Organization. World Health Organization global report on falls prevention in older age, 2007 (2011)
3.
Zurück zum Zitat Elfaramawy, T., Fall, C.L., Morissette, M., Lellouche, F.: Wireless respiratory monitoring and coughing detection using a wearable patch sensor network. In: 15th IEEE International New Circuits and Systems Conference (NEWCAS), pp. 197–200 (2017) Elfaramawy, T., Fall, C.L., Morissette, M., Lellouche, F.: Wireless respiratory monitoring and coughing detection using a wearable patch sensor network. In: 15th IEEE International New Circuits and Systems Conference (NEWCAS), pp. 197–200 (2017)
4.
Zurück zum Zitat Chen, K., Chen, Y., Sun, Y. Liu, J.: A system of fall detection using a wearable device based on bluetooth communication. In: 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 382–384 (2016) Chen, K., Chen, Y., Sun, Y. Liu, J.: A system of fall detection using a wearable device based on bluetooth communication. In: 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 382–384 (2016)
5.
Zurück zum Zitat Otanasap, N.: Pre-impact fall detection based on wearable device using dynamic threshold model. In: 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 362–365 (2016) Otanasap, N.: Pre-impact fall detection based on wearable device using dynamic threshold model. In: 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 362–365 (2016)
6.
Zurück zum Zitat Ozcan, K., Velipasalar, S.: Wearable camera and accelerometer based fall detection on portable devices. IEEE Embed. Syst. Lett. 8(1), 6–9 (2016)CrossRef Ozcan, K., Velipasalar, S.: Wearable camera and accelerometer based fall detection on portable devices. IEEE Embed. Syst. Lett. 8(1), 6–9 (2016)CrossRef
7.
Zurück zum Zitat Geo, H.W., Hsieh, T.T., Huang, Y.S., Chien, J.C., Haraikawa, K., Shieh, J.S.: A threshold-based algorithm of fall detection using a wearable device with tri-axial accelerometer and gyroscope. In: International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), pp. 54–57 (2015) Geo, H.W., Hsieh, T.T., Huang, Y.S., Chien, J.C., Haraikawa, K., Shieh, J.S.: A threshold-based algorithm of fall detection using a wearable device with tri-axial accelerometer and gyroscope. In: International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), pp. 54–57 (2015)
8.
Zurück zum Zitat Wang, C., et al.: Low-power fall detector using triaxial accelerometry and barometric pressure sensing. IEEE Trans. Ind. Inf. 13(6), 2302–2311 (2016)CrossRef Wang, C., et al.: Low-power fall detector using triaxial accelerometry and barometric pressure sensing. IEEE Trans. Ind. Inf. 13(6), 2302–2311 (2016)CrossRef
9.
Zurück zum Zitat What’s new in electronics: Emergency Dailer. Popular Science, p. 104. Bonnier Corporation, New York (1975) What’s new in electronics: Emergency Dailer. Popular Science, p. 104. Bonnier Corporation, New York (1975)
10.
Zurück zum Zitat Lord, C.J., Colvin, D.P.: Falls in the elderly: Detection and assessment. In: IEEE Proceedings of the Annual International Conference of the Engineering in Medicine and Biology Society, pp. 1938–1939 (1991) Lord, C.J., Colvin, D.P.: Falls in the elderly: Detection and assessment. In: IEEE Proceedings of the Annual International Conference of the Engineering in Medicine and Biology Society, pp. 1938–1939 (1991)
11.
Zurück zum Zitat Muheidat, F., Tawalbeh, L., Tyrer, H.: Context-aware, accurate, and real time fall detection system for elderly people. In: 12th IEEE International Conference on Semantic Computing (ICSC), pp. 329–333 (2018) Muheidat, F., Tawalbeh, L., Tyrer, H.: Context-aware, accurate, and real time fall detection system for elderly people. In: 12th IEEE International Conference on Semantic Computing (ICSC), pp. 329–333 (2018)
12.
Zurück zum Zitat Joshi, N.B., Nalbalwar, S.L.: A fall detection and alert system for an elderly using computer vision and Internet of Things. In: 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT), pp. 1276–1281 (2017) Joshi, N.B., Nalbalwar, S.L.: A fall detection and alert system for an elderly using computer vision and Internet of Things. In: 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT), pp. 1276–1281 (2017)
13.
Zurück zum Zitat Djelouat, H., Baali, H., Amira, A., Bensaali, F.: CS-based fall detection for connected health applications. In: 4th International Conference on Advances in Biomedical Engineering (ICABME), pp. 1–4 (2017) Djelouat, H., Baali, H., Amira, A., Bensaali, F.: CS-based fall detection for connected health applications. In: 4th International Conference on Advances in Biomedical Engineering (ICABME), pp. 1–4 (2017)
14.
Zurück zum Zitat Merrouche, F., Baha, N.: Depth camera based fall detection using human shape and movement. In: IEEE International Conference on Signal and Image Processing (ICSIP), pp. 586–590 (2016) Merrouche, F., Baha, N.: Depth camera based fall detection using human shape and movement. In: IEEE International Conference on Signal and Image Processing (ICSIP), pp. 586–590 (2016)
15.
Zurück zum Zitat Wang, X., Liu, H., Liu, M.: A novel multi-cue integration system for efficient human fall detection. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1319–1324 (2016) Wang, X., Liu, H., Liu, M.: A novel multi-cue integration system for efficient human fall detection. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1319–1324 (2016)
16.
Zurück zum Zitat Wang, K., Cao, G., Meng, D., Chen, W., Cao, W.: Automatic fall detection of human in video using combination of features. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1228–1233 (2016) Wang, K., Cao, G., Meng, D., Chen, W., Cao, W.: Automatic fall detection of human in video using combination of features. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1228–1233 (2016)
17.
Zurück zum Zitat Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Robust video surveillance for fall detection based on human shape deformation. IEEE Trans. Circuits Syst. Video Technol. 21(5), 611–622 (2011)CrossRef Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Robust video surveillance for fall detection based on human shape deformation. IEEE Trans. Circuits Syst. Video Technol. 21(5), 611–622 (2011)CrossRef
18.
Zurück zum Zitat Iazzi, A., Thami, R.O.H. , Rziza, M.: A novel approach to improve background subtraction method for fall detection system. In: 12th IEEE/ACS International Conference of Computer Systems and Applications (AICCSA), pp. 1–2 (2015) Iazzi, A., Thami, R.O.H. , Rziza, M.: A novel approach to improve background subtraction method for fall detection system. In: 12th IEEE/ACS International Conference of Computer Systems and Applications (AICCSA), pp. 1–2 (2015)
19.
Zurück zum Zitat Yajai, A., Rodtook, A., Chinnasarn, K., Rasmequan, S.: Fall detection using directional bounding box. In: 12th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 52–57 (2015) Yajai, A., Rodtook, A., Chinnasarn, K., Rasmequan, S.: Fall detection using directional bounding box. In: 12th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 52–57 (2015)
20.
Zurück zum Zitat Hernandez, S.D., DeLaHoz, Y., Labrador, M.: Dynamic background subtraction for fall detection system using a 2D camera. In: IEEE Latin-America Conference on Communications (LATINCOM), pp. 1–6 (2014) Hernandez, S.D., DeLaHoz, Y., Labrador, M.: Dynamic background subtraction for fall detection system using a 2D camera. In: IEEE Latin-America Conference on Communications (LATINCOM), pp. 1–6 (2014)
21.
Zurück zum Zitat Ma, X., Wang, H., Xue, B., Zhou, M., Ji, B., Li, Y.: Depth-based human fall detection via shape features and improved extreme learning machine. IEEE J. Biomed. Health Inf. 18(6), 1915–1922 (2014)CrossRef Ma, X., Wang, H., Xue, B., Zhou, M., Ji, B., Li, Y.: Depth-based human fall detection via shape features and improved extreme learning machine. IEEE J. Biomed. Health Inf. 18(6), 1915–1922 (2014)CrossRef
22.
Zurück zum Zitat Chua, J.L., Chang, Y.C., Lim, W.K.: Visual based fall detection through human shape variation and head detection. In: International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), pp. 61–65 (2013) Chua, J.L., Chang, Y.C., Lim, W.K.: Visual based fall detection through human shape variation and head detection. In: International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), pp. 61–65 (2013)
23.
Zurück zum Zitat Dumitrache, M., Pasca, S.: Fall detection algorithm based on triaxial accelerometer data. In: E-health and Bioengineering conference (EBH), pp. 1–4 (2013) Dumitrache, M., Pasca, S.: Fall detection algorithm based on triaxial accelerometer data. In: E-health and Bioengineering conference (EBH), pp. 1–4 (2013)
24.
Zurück zum Zitat Xiao, H., Wang, X., Li, Q., Wang, Z.: Gaussian mixture model for background based automatic fall detection. In: International Conference on Cyberspace technology (CCT), pp. 234–237 (2013) Xiao, H., Wang, X., Li, Q., Wang, Z.: Gaussian mixture model for background based automatic fall detection. In: International Conference on Cyberspace technology (CCT), pp. 234–237 (2013)
25.
Zurück zum Zitat Khawandi, S., Ballit, A., Daya, B.: Applying machine learning algorithm in fall Detection Monitoring System. In: 5th International Conference on Computational Intelligence and Communication Networks (CICN), pp. 247–250 (2013) Khawandi, S., Ballit, A., Daya, B.: Applying machine learning algorithm in fall Detection Monitoring System. In: 5th International Conference on Computational Intelligence and Communication Networks (CICN), pp. 247–250 (2013)
26.
Zurück zum Zitat Yun, Y., Gu, I.Y.: Human fall detection via shape analysis on Riemannian manifolds with applications to elderly care. In: IEEE International Conference on Image Processing (ICIP), pp. 3280–3284 (2015) Yun, Y., Gu, I.Y.: Human fall detection via shape analysis on Riemannian manifolds with applications to elderly care. In: IEEE International Conference on Image Processing (ICIP), pp. 3280–3284 (2015)
Metadaten
Titel
Automated Fall Detection Using Computer Vision
verfasst von
Pramod Kumar Soni
Ayesha Choudhary
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-04021-5_20

Neuer Inhalt