Skip to main content

2019 | OriginalPaper | Buchkapitel

9. Automatic Vertebra Labeling in Large-Scale Medical Images Using Deep Image-to-Image Network with Message Passing and Sparsity Regularization

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Efficient and accurate vertebra labeling in medical images is important for longitudinal assessment, pathological diagnosis, and clinical treatment of the spinal diseases. In practice, the abnormal conditions in the images increase the difficulties to accurately identify the vertebrae locations. Such conditions include uncommon spinal curvature, bright imaging artifacts caused by metal implants, and limited field of the imaging view, etc. In this chapter, we propose an automatic vertebra localization and labeling method with high accuracy and efficiency for medical images. First, we introduce a deep image-to-image network (DI2IN) which generates the probability maps for vertebral centroids. The DI2IN adopts multiple prevailing techniques, including feature concatenation and deep supervision, to boost its performance. Second, a message-passing scheme is used to evolve the probability maps from DI2IN within multiple iterations, according to the spatial relationship of vertebrae. Finally, the locations of vertebra are refined and constrained with a learned sparse representation. We evaluate the proposed method on two categories of public databases, 3D CT volumes, and 2D X-ray scans, under various pathologies. The experimental results show that our method outperforms other state-of-the-art methods in terms of localization accuracy. In order to further boost the performance, we add 1000 extra 3D CT volumes with expert annotation when training the DI2IN for CT images. The results justify that large databases can improve the generalization capability and the performance of the deep neural networks. To the best of our knowledge, it is the first time that more than 1000 3D CT volumes are utilized for the anatomical landmark detection and the overall identification rate reaches 90% in spine labeling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Badrinarayanan V, Kendall A, Cipolla R (2015) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv:1511.00561 Badrinarayanan V, Kendall A, Cipolla R (2015) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv:​1511.​00561
2.
Zurück zum Zitat Benameur S, Mignotte M, Parent S, Labelle H, Skalli W, de Guise J (2003) 3d/2d registration and segmentation of scoliotic vertebrae using statistical models. Comput Med Imaging Graph 27(5):321–337CrossRef Benameur S, Mignotte M, Parent S, Labelle H, Skalli W, de Guise J (2003) 3d/2d registration and segmentation of scoliotic vertebrae using statistical models. Comput Med Imaging Graph 27(5):321–337CrossRef
3.
Zurück zum Zitat Boisvert J, Cheriet F, Pennec X, Labelle H, Ayache N (2008) Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans Med Imaging 27(4):557–568CrossRef Boisvert J, Cheriet F, Pennec X, Labelle H, Ayache N (2008) Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans Med Imaging 27(4):557–568CrossRef
4.
Zurück zum Zitat Chen H, Shen C, Qin J, Ni D, Shi L, Cheng JC, Heng PA (2015) Automatic localization and identification of vertebrae in spine ct via a joint learning model with deep neural networks. In: International conference on medical image computing and computer-assisted intervention, pp 515–522. Springer International Publishing Chen H, Shen C, Qin J, Ni D, Shi L, Cheng JC, Heng PA (2015) Automatic localization and identification of vertebrae in spine ct via a joint learning model with deep neural networks. In: International conference on medical image computing and computer-assisted intervention, pp 515–522. Springer International Publishing
5.
Zurück zum Zitat Chu X, Ouyang W, Li H, Wang X (2016) Structured feature learning for pose estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4715–4723 Chu X, Ouyang W, Li H, Wang X (2016) Structured feature learning for pose estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4715–4723
6.
Zurück zum Zitat Demner-Fushman D, Kohli MD, Rosenman MB, Shooshan SE, Rodriguez L, Antani S, Thoma GR, McDonald CJ (2015) Preparing a collection of radiology examinations for distribution and retrieval. J Am Med Inform Assoc 23(2):304–310CrossRef Demner-Fushman D, Kohli MD, Rosenman MB, Shooshan SE, Rodriguez L, Antani S, Thoma GR, McDonald CJ (2015) Preparing a collection of radiology examinations for distribution and retrieval. J Am Med Inform Assoc 23(2):304–310CrossRef
7.
Zurück zum Zitat Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148CrossRef Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148CrossRef
8.
Zurück zum Zitat Glocker B, Feulner J, Criminisi A, Haynor D, Konukoglu E (2012) Automatic localization and identification of vertebrae in arbitrary field-of-view ct scans. In: Medical image computing and computer-assisted intervention-MICCAI, pp 590–598CrossRef Glocker B, Feulner J, Criminisi A, Haynor D, Konukoglu E (2012) Automatic localization and identification of vertebrae in arbitrary field-of-view ct scans. In: Medical image computing and computer-assisted intervention-MICCAI, pp 590–598CrossRef
9.
Zurück zum Zitat Glocker B, Zikic D, Konukoglu E, Haynor DR, Criminisi A (2013) Vertebrae localization in pathological spine ct via dense classification from sparse annotations. In: International conference on medical image computing and computer-assisted intervention, pp 262–270. Springer Glocker B, Zikic D, Konukoglu E, Haynor DR, Criminisi A (2013) Vertebrae localization in pathological spine ct via dense classification from sparse annotations. In: International conference on medical image computing and computer-assisted intervention, pp 262–270. Springer
10.
Zurück zum Zitat Jaeger S, Candemir S, Antani S, Wáng YXJ, Lu PX, Thoma G (2014) Two public chest x-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4(6):475–477 Jaeger S, Candemir S, Antani S, Wáng YXJ, Lu PX, Thoma G (2014) Two public chest x-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4(6):475–477
11.
Zurück zum Zitat Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in ct images. Med Image Anal 13(3):471–482CrossRef Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in ct images. Med Image Anal 13(3):471–482CrossRef
12.
Zurück zum Zitat Komodakis N, Paragios N, Tziritas G (2007) Mrf optimization via dual decomposition: message-passing revisited. In: 2007 IEEE 11th international conference on computer vision, ICCV 2007, pp 1–8. IEEE Komodakis N, Paragios N, Tziritas G (2007) Mrf optimization via dual decomposition: message-passing revisited. In: 2007 IEEE 11th international conference on computer vision, ICCV 2007, pp 1–8. IEEE
13.
Zurück zum Zitat Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
14.
Zurück zum Zitat Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp 565–571. IEEE Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp 565–571. IEEE
15.
Zurück zum Zitat Nowozin S, Lampert CH et al (2011) Structured learning and prediction in computer vision. Foundations and Trends® in Computer Graphics and Vision 6(3–4):185–365CrossRef Nowozin S, Lampert CH et al (2011) Structured learning and prediction in computer vision. Foundations and Trends® in Computer Graphics and Vision 6(3–4):185–365CrossRef
16.
Zurück zum Zitat Payer C, Stern D, Bischof H, Urschler M (2016) Regressing heatmaps for multiple landmark localization using cnns. In: MICCAI 2, pp 230–238 Payer C, Stern D, Bischof H, Urschler M (2016) Regressing heatmaps for multiple landmark localization using cnns. In: MICCAI 2, pp 230–238
17.
Zurück zum Zitat Roberts M, Cootes T, Adams J (2005) Vertebral shape: automatic measurement with dynamically sequenced active appearance models. In: Medical image computing and computer-assisted intervention-MICCAI 2005, pp 733–740 Roberts M, Cootes T, Adams J (2005) Vertebral shape: automatic measurement with dynamically sequenced active appearance models. In: Medical image computing and computer-assisted intervention-MICCAI 2005, pp 733–740
18.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp. 234–241. Springer Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp. 234–241. Springer
19.
Zurück zum Zitat Ross S, Munoz D, Hebert M, Bagnell JA (2011) Learning message-passing inference machines for structured prediction. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR), pp 2737–2744. IEEE Ross S, Munoz D, Hebert M, Bagnell JA (2011) Learning message-passing inference machines for structured prediction. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR), pp 2737–2744. IEEE
20.
Zurück zum Zitat Rubinstein R, Bruckstein AM, Elad M (2010) Dictionaries for sparse representation modeling. Proc IEEE 98(6):1045–1057CrossRef Rubinstein R, Bruckstein AM, Elad M (2010) Dictionaries for sparse representation modeling. Proc IEEE 98(6):1045–1057CrossRef
21.
Zurück zum Zitat Schmidt S, Kappes J, Bergtholdt M, Pekar V, Dries S, Bystrov D, Schnörr C (2007) Spine detection and labeling using a parts-based graphical model. In: Information processing in medical imaging, pp 122–133. Springer Schmidt S, Kappes J, Bergtholdt M, Pekar V, Dries S, Bystrov D, Schnörr C (2007) Spine detection and labeling using a parts-based graphical model. In: Information processing in medical imaging, pp 122–133. Springer
22.
Zurück zum Zitat Schwarzenbach O, Berlemann U, Jost B, Visarius H, Arm E, Langlotz F, Nolte LP, Ozdoba C (1997) Accuracy of computer-assisted pedicle screw placement: an in vivo computed tomography analysis. Spine 22(4):452–458CrossRef Schwarzenbach O, Berlemann U, Jost B, Visarius H, Arm E, Langlotz F, Nolte LP, Ozdoba C (1997) Accuracy of computer-assisted pedicle screw placement: an in vivo computed tomography analysis. Spine 22(4):452–458CrossRef
23.
Zurück zum Zitat Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu KI., Matsui M, Fujita H, Kodera Y, Doi K (2000) Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am J Roentgenol 174(1):71–74CrossRef Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu KI., Matsui M, Fujita H, Kodera Y, Doi K (2000) Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am J Roentgenol 174(1):71–74CrossRef
24.
Zurück zum Zitat Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S (2017) Direct estimation of spinal cobb angles by structured multi-output regression. In: International conference on information processing in medical imaging, pp 529–540. Springer Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S (2017) Direct estimation of spinal cobb angles by structured multi-output regression. In: International conference on information processing in medical imaging, pp 529–540. Springer
25.
Zurück zum Zitat Suzani A, Seitel A, Liu Y, Fels S, Rohling RN, Abolmaesumi P (2015) Fast automatic vertebrae detection and localization in pathological ct scans-a deep learning approach. In: International conference on medical image computing and computer-assisted intervention, pp 678–686. Springer Suzani A, Seitel A, Liu Y, Fels S, Rohling RN, Abolmaesumi P (2015) Fast automatic vertebrae detection and localization in pathological ct scans-a deep learning approach. In: International conference on medical image computing and computer-assisted intervention, pp 678–686. Springer
26.
Zurück zum Zitat Tomazevic D, Likar B, Slivnik T, Pernus F (2003) 3-d/2-d registration of ct and mr to x-ray images. IEEE Trans Med Imaging 22(11):1407–1416CrossRef Tomazevic D, Likar B, Slivnik T, Pernus F (2003) 3-d/2-d registration of ct and mr to x-ray images. IEEE Trans Med Imaging 22(11):1407–1416CrossRef
27.
Zurück zum Zitat Wainwright MJ, Jordan MI et al (2008) Graphical models, exponential families, and variational inference. Foundations and Trends® in Machine Learning 1(1–2):1–305CrossRef Wainwright MJ, Jordan MI et al (2008) Graphical models, exponential families, and variational inference. Foundations and Trends® in Machine Learning 1(1–2):1–305CrossRef
28.
Zurück zum Zitat Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044CrossRef Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044CrossRef
29.
Zurück zum Zitat Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403 Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403
30.
Zurück zum Zitat Yang D, Xiong T, Xu D, Huang Q, Liu D, Zhou SK, Xu Z, Park J, Chen M, Tran TD et al (2017) Automatic vertebra labeling in large-scale 3d ct using deep image-to-image network with message passing and sparsity regularization. In: International conference on information processing in medical imaging, pp 633–644. Springer Yang D, Xiong T, Xu D, Huang Q, Liu D, Zhou SK, Xu Z, Park J, Chen M, Tran TD et al (2017) Automatic vertebra labeling in large-scale 3d ct using deep image-to-image network with message passing and sparsity regularization. In: International conference on information processing in medical imaging, pp 633–644. Springer
31.
Zurück zum Zitat Yang W, Ouyang W, Li H, Wang X (2016) End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3073–3082 Yang W, Ouyang W, Li H, Wang X (2016) End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3073–3082
32.
Zurück zum Zitat Yao J, Burns JE, Forsberg D, Seitel A, Rasoulian A, Abolmaesumi P, Hammernik K, Urschler M, Ibragimov B, Korez R et al (2016) A multi-center milestone study of clinical vertebral ct segmentation. Comput Med Imaging Graph 49:16–28CrossRef Yao J, Burns JE, Forsberg D, Seitel A, Rasoulian A, Abolmaesumi P, Hammernik K, Urschler M, Ibragimov B, Korez R et al (2016) A multi-center milestone study of clinical vertebral ct segmentation. Comput Med Imaging Graph 49:16–28CrossRef
Metadaten
Titel
Automatic Vertebra Labeling in Large-Scale Medical Images Using Deep Image-to-Image Network with Message Passing and Sparsity Regularization
verfasst von
Dong Yang
Tao Xiong
Daguang Xu
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13969-8_9

Premium Partner