Skip to main content
Erschienen in: Natural Computing 2/2019

24.08.2018

Automatically obtaining a cellular automaton scheme for modeling protein folding using the FCC model

verfasst von: Daniel Varela, José Santos

Erschienen in: Natural Computing | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes to model protein folding as an emergent process, using machine learning to infer the folding modeling only from information of known protein structures. Using the face-centered cubic lattice for protein conformation representation, the dynamic nature of protein folding is captured with an evolved neural cellular automaton that defines the amino acids moves along the protein chain and across time. The results of the final folded conformations are compared, using different protein benchmarks, with other methods used in the traditional protein structure prediction problem, highlighting the capabilities and problems found with this modeling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The acronym CA will be used either for Cellular Automata or for Cellular Automation.
 
Literatur
Zurück zum Zitat Anfinsen CB (1973) Principles that govern the folding of proteins. Science 181(96):223–230CrossRef Anfinsen CB (1973) Principles that govern the folding of proteins. Science 181(96):223–230CrossRef
Zurück zum Zitat Backofen R, Will S (2006) A constraint-based approach to fast and exact structure prediction in three-dimensional protein models. Constraints 11(1):5–30MathSciNetCrossRefMATH Backofen R, Will S (2006) A constraint-based approach to fast and exact structure prediction in three-dimensional protein models. Constraints 11(1):5–30MathSciNetCrossRefMATH
Zurück zum Zitat Backofen R, Will S, Clote P (2000) Algorithmic approach to quantifying the hydrophobic force contribution in protein folding. In: Proceedings of the Pacific symposium on biocomputing. Citeseer, pp 92–103 Backofen R, Will S, Clote P (2000) Algorithmic approach to quantifying the hydrophobic force contribution in protein folding. In: Proceedings of the Pacific symposium on biocomputing. Citeseer, pp 92–103
Zurück zum Zitat Calabretta R, Nolfi S, Parisi D (1995) An artificial life model for predicting the tertiary structure of unknown proteins that emulates the folding process. In: Proceedings of European conference on advances in artificial life—LNCS, vol 929, pp 862–875 Calabretta R, Nolfi S, Parisi D (1995) An artificial life model for predicting the tertiary structure of unknown proteins that emulates the folding process. In: Proceedings of European conference on advances in artificial life—LNCS, vol 929, pp 862–875
Zurück zum Zitat Conway JH, Sloane NJA (1998) Sphere packings, lattices and groups. Springer, Berlin Conway JH, Sloane NJA (1998) Sphere packings, lattices and groups. Springer, Berlin
Zurück zum Zitat Cutello V, Nicosia G, Pavone M, Timmis J (2007) An immune algorithm for protein structure prediction on lattice models. IEEE Trans Evolut Comput 11(1):101–117CrossRef Cutello V, Nicosia G, Pavone M, Timmis J (2007) An immune algorithm for protein structure prediction on lattice models. IEEE Trans Evolut Comput 11(1):101–117CrossRef
Zurück zum Zitat Danks G, Stepney S, Caves L (2008) Protein folding with stochastic L-systems. In: Proceedings of artificial life XI, pp 150–157 Danks G, Stepney S, Caves L (2008) Protein folding with stochastic L-systems. In: Proceedings of artificial life XI, pp 150–157
Zurück zum Zitat Dill KA (1990) Dominant forces in protein folding. Biochemestry 29:7133–7155CrossRef Dill KA (1990) Dominant forces in protein folding. Biochemestry 29:7133–7155CrossRef
Zurück zum Zitat Dotu I, Cebrián M, Van Hentenryck PV, Clote P (2011) On lattice protein structure prediction revisited. IEEE/ACM Trans Comput Biol Bioinform 8(6):1620–1632CrossRef Dotu I, Cebrián M, Van Hentenryck PV, Clote P (2011) On lattice protein structure prediction revisited. IEEE/ACM Trans Comput Biol Bioinform 8(6):1620–1632CrossRef
Zurück zum Zitat Feig M, Mirjalili V (2016) Protein structure refinement via molecular-dynamics simulations: what works and what does not? Proteins Suppl 1:282–292CrossRef Feig M, Mirjalili V (2016) Protein structure refinement via molecular-dynamics simulations: what works and what does not? Proteins Suppl 1:282–292CrossRef
Zurück zum Zitat Hirst JD (1999) The evolutionary landscape of functional model proteins. Protein Eng 12(9):721–726CrossRef Hirst JD (1999) The evolutionary landscape of functional model proteins. Protein Eng 12(9):721–726CrossRef
Zurück zum Zitat Ilachinski A (2001) Cellular automata, a discrete universe. World Scientific, SingaporeCrossRefMATH Ilachinski A (2001) Cellular automata, a discrete universe. World Scientific, SingaporeCrossRefMATH
Zurück zum Zitat Krasnogor N, Hart WE, Smith J, Pelta DA (1999) Protein structure prediction with evolutionary algorithms. In: Proceedings of the genetic and evolutionary computation conference—GECCO’99, pp 1596–1601 Krasnogor N, Hart WE, Smith J, Pelta DA (1999) Protein structure prediction with evolutionary algorithms. In: Proceedings of the genetic and evolutionary computation conference—GECCO’99, pp 1596–1601
Zurück zum Zitat Krasnogor N, Terrazas G, Pelta DA, Ochoa G (2002) A critical view of the evolutionary design of self-assembling systems. In: Proceedings of the 2005 conference on artificial evolution, LNCS, vol 3871, pp 179–188 Krasnogor N, Terrazas G, Pelta DA, Ochoa G (2002) A critical view of the evolutionary design of self-assembling systems. In: Proceedings of the 2005 conference on artificial evolution, LNCS, vol 3871, pp 179–188
Zurück zum Zitat Langton CG (1992) Life at the edge of chaos. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison-Wesley, Reading, pp 41–49 Langton CG (1992) Life at the edge of chaos. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison-Wesley, Reading, pp 41–49
Zurück zum Zitat Levinthal C (1968) Are there pathways for protein folding? J Chim Phys 65:44–45CrossRef Levinthal C (1968) Are there pathways for protein folding? J Chim Phys 65:44–45CrossRef
Zurück zum Zitat Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092CrossRef Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092CrossRef
Zurück zum Zitat Olson B, De-Jong K, Shehu A (2013) Off-lattice protein structure prediction with homologous crossover. In: Proceedings conference on genetic and evolutionary computation—GECCO 2013, pp 287–294 Olson B, De-Jong K, Shehu A (2013) Off-lattice protein structure prediction with homologous crossover. In: Proceedings conference on genetic and evolutionary computation—GECCO 2013, pp 287–294
Zurück zum Zitat Patton WP, Punch WF, Goldman E (1995) A standard genetic algorithm approach to native protein conformation prediction. In: Proceedings of 6th international conference on genetic algorithms, pp 574–581 Patton WP, Punch WF, Goldman E (1995) A standard genetic algorithm approach to native protein conformation prediction. In: Proceedings of 6th international conference on genetic algorithms, pp 574–581
Zurück zum Zitat Price KV, Storn RM, Lampinen JA (2005) Differential evolution. A practical approach to global optimization. Natural computer series. Springer, BerlinMATH Price KV, Storn RM, Lampinen JA (2005) Differential evolution. A practical approach to global optimization. Natural computer series. Springer, BerlinMATH
Zurück zum Zitat Rashid MA, Hoque MT, Newton MH, Pham DN, Sattar A (2012) A new genetic algorithm for simplified protein structure prediction. In: Proceedings Australasian joint conference on advances in artificial intelligence—AI 2012, LNCS, vol 7691, pp 107–119 Rashid MA, Hoque MT, Newton MH, Pham DN, Sattar A (2012) A new genetic algorithm for simplified protein structure prediction. In: Proceedings Australasian joint conference on advances in artificial intelligence—AI 2012, LNCS, vol 7691, pp 107–119
Zurück zum Zitat Santos J, Diéguez M (2011) Differential evolution for protein structure prediction using the HP model. In: Lecture Notes in Computer Science, vol 6686, pp 323–323 Santos J, Diéguez M (2011) Differential evolution for protein structure prediction using the HP model. In: Lecture Notes in Computer Science, vol 6686, pp 323–323
Zurück zum Zitat Santos J, Villot P, Diéguez M (2013) Cellular automata for modeling protein folding using the HP model. In: Proceedings IEEE congress on evolutionary computation—IEEE-CEC 2013, pp 1586–1593 Santos J, Villot P, Diéguez M (2013) Cellular automata for modeling protein folding using the HP model. In: Proceedings IEEE congress on evolutionary computation—IEEE-CEC 2013, pp 1586–1593
Zurück zum Zitat Santos J, Villot P, Diéguez M (2014) Emergent protein folding modeled with evolved neural cellular automata using the 3D HP model. J Comput Biol 21(11):823–845CrossRef Santos J, Villot P, Diéguez M (2014) Emergent protein folding modeled with evolved neural cellular automata using the 3D HP model. J Comput Biol 21(11):823–845CrossRef
Zurück zum Zitat Shatabda S, Newton MH, Pham DN, Sattar A (2012) Memory-based local search for simplified protein structure prediction. In: Proceedings of ACM conference on bioinformatics, computational biology and biomedicine—BCB’12, pp 345–352 Shatabda S, Newton MH, Pham DN, Sattar A (2012) Memory-based local search for simplified protein structure prediction. In: Proceedings of ACM conference on bioinformatics, computational biology and biomedicine—BCB’12, pp 345–352
Zurück zum Zitat Shatabda S, Newton MH, Rashid MA, Sattar A (2013) An efficient encoding for simplified protein structure prediction using genetic algorithms. In: Proceedings of IEEE congress on evolutionary computation—IEEE-CEC 2013, pp 1217–1224 Shatabda S, Newton MH, Rashid MA, Sattar A (2013) An efficient encoding for simplified protein structure prediction using genetic algorithms. In: Proceedings of IEEE congress on evolutionary computation—IEEE-CEC 2013, pp 1217–1224
Zurück zum Zitat Shmygelska A, Hoos HH (2005) An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. Bioinformatics 6:30 Shmygelska A, Hoos HH (2005) An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. Bioinformatics 6:30
Zurück zum Zitat Tsay J-J, Su S-C (2013) An effective evolutionary algorithm for protein folding on 3D FCC HP model by lattice rotation and generalized move sets. Proteome Sci 11(1):S19CrossRef Tsay J-J, Su S-C (2013) An effective evolutionary algorithm for protein folding on 3D FCC HP model by lattice rotation and generalized move sets. Proteome Sci 11(1):S19CrossRef
Zurück zum Zitat Unger R, Moult J (1993) Genetic algorithms for protein folding simulations. J Mol Biol 231(1):75–81CrossRef Unger R, Moult J (1993) Genetic algorithms for protein folding simulations. J Mol Biol 231(1):75–81CrossRef
Zurück zum Zitat Varela D, Santos J (2017) Protein folding modeling with neural cellular automata using the face-centered cubic model. In: Proceedings international work-conference on the interplay between natural and artificial computation. LNCS, vol 10337, pp 125–134 Varela D, Santos J (2017) Protein folding modeling with neural cellular automata using the face-centered cubic model. In: Proceedings international work-conference on the interplay between natural and artificial computation. LNCS, vol 10337, pp 125–134
Zurück zum Zitat Yue K, Fiebig KM, Thomas PD, Chan HS, Shakhnovich EI, Dill KA (1995) A test of lattice protein folding algorithms. In: Proceedings of the pacific symposium on biocomputing, vol 92, no 1, p 325 Yue K, Fiebig KM, Thomas PD, Chan HS, Shakhnovich EI, Dill KA (1995) A test of lattice protein folding algorithms. In: Proceedings of the pacific symposium on biocomputing, vol 92, no 1, p 325
Zurück zum Zitat Zhao X (2008) Advances on protein folding simulations based on the lattice HP models with natural computing. Appl Soft Comput 8:1029–1040CrossRef Zhao X (2008) Advances on protein folding simulations based on the lattice HP models with natural computing. Appl Soft Comput 8:1029–1040CrossRef
Metadaten
Titel
Automatically obtaining a cellular automaton scheme for modeling protein folding using the FCC model
verfasst von
Daniel Varela
José Santos
Publikationsdatum
24.08.2018
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 2/2019
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-018-9705-y

Weitere Artikel der Ausgabe 2/2019

Natural Computing 2/2019 Zur Ausgabe

EditorialNotes

Preface