Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2019

04.02.2019 | Research Paper

Axially variable-length solid element of absolute nodal coordinate formulation

verfasst von: Jialiang Sun, Qiang Tian, Haiyan Hu, Niels L. Pedersen

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An axially variable-length solid element with eight nodes is proposed by integrating the arbitrary Lagrangian–Eulerian (ALE) formulation and the absolute nodal coordinate formulation (ANCF). In addition to the nodal positions and slopes of eight nodes, two material coordinates in the axial direction are used as the generalized coordinates. As a consequence, the nodes in the ALE–ANCF are not associated with any specific material points and the axial length of the solid element can be varied over time. These two material coordinates give rise to a variable mass matrix and an additional inertial force vector. Computationally efficient formulae of the additional inertial forces and elastic forces, as well as their Jacobians, are also derived. The dynamic equation of a flexible multibody system (FMBS) with variable-length bodies is presented. The maximum and minimum lengths of the boundary elements of an FMBS have to be appropriately defined to ensure accuracy and non-singularity when solving the dynamic equation. Three numerical examples of static and dynamic problems are given to validate the variable-length solid elements of ALE–ANCF and show their capability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sun, J.L., Tian, Q., Hu, H.Y.: Topology optimization of a three-dimensional flexible multibody system via moving morphable components. J. Comput. Nonlinear Dyn. 13, 021010 (2018)CrossRef Sun, J.L., Tian, Q., Hu, H.Y.: Topology optimization of a three-dimensional flexible multibody system via moving morphable components. J. Comput. Nonlinear Dyn. 13, 021010 (2018)CrossRef
2.
Zurück zum Zitat Olshevskiy, A., Dmitrochenko, O., Yang, H., et al.: Absolute nodal coordinate formulation of tetrahedral solid element. Nonlinear Dyn. 88, 2457–2471 (2017)CrossRefMATH Olshevskiy, A., Dmitrochenko, O., Yang, H., et al.: Absolute nodal coordinate formulation of tetrahedral solid element. Nonlinear Dyn. 88, 2457–2471 (2017)CrossRefMATH
3.
Zurück zum Zitat Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8, 031016 (2013)CrossRef Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8, 031016 (2013)CrossRef
5.
Zurück zum Zitat Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Report, No. MBS96-1-UIC. University of Illinois at Chicago, Chicago (1996) Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Report, No. MBS96-1-UIC. University of Illinois at Chicago, Chicago (1996)
6.
Zurück zum Zitat Olshevskiy, A., Dmitrochenko, O., Kim, C.: Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 9, 021001 (2014)CrossRef Olshevskiy, A., Dmitrochenko, O., Kim, C.: Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 9, 021001 (2014)CrossRef
7.
Zurück zum Zitat Wei, C., Wang, L., Shabana, A.A.: A total Lagrangian ANCF liquid sloshing approach for multibody system applications. J. Comput. Nonlinear Dyn. 10, 051014 (2015)CrossRef Wei, C., Wang, L., Shabana, A.A.: A total Lagrangian ANCF liquid sloshing approach for multibody system applications. J. Comput. Nonlinear Dyn. 10, 051014 (2015)CrossRef
8.
Zurück zum Zitat Pappalardo, C.M., Wang, T., Shabana, A.A.: Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dyn. 89, 2905–2932 (2017)MathSciNetCrossRefMATH Pappalardo, C.M., Wang, T., Shabana, A.A.: Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dyn. 89, 2905–2932 (2017)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Tang, J.L., Ren, G.X., Zhu, W.D., et al.: Dynamics of variable-length tethers with application to tethered satellite deployment. Commun. Nonlinear Sci. Numer. 16, 3411–3424 (2011)MathSciNetCrossRefMATH Tang, J.L., Ren, G.X., Zhu, W.D., et al.: Dynamics of variable-length tethers with application to tethered satellite deployment. Commun. Nonlinear Sci. Numer. 16, 3411–3424 (2011)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Escalona, J.L.: An arbitrary Lagrangian–Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics. Mech. Mach. Theory 112, 1–21 (2017)CrossRef Escalona, J.L.: An arbitrary Lagrangian–Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics. Mech. Mach. Theory 112, 1–21 (2017)CrossRef
11.
Zurück zum Zitat Du, J.L., Cui, C.Z., Bao, H., et al.: Dynamic analysis of cable-driven parallel manipulators using a variable length finite element. J. Comput. Nonlinear Dyn. 10, 011013 (2015)CrossRef Du, J.L., Cui, C.Z., Bao, H., et al.: Dynamic analysis of cable-driven parallel manipulators using a variable length finite element. J. Comput. Nonlinear Dyn. 10, 011013 (2015)CrossRef
12.
Zurück zum Zitat Gross, D., Messner, D.: The able deployable articulated mast–enabling technology for the shuttle radar topography mission. In: Proceedings of the 33rd Aerospace Mechanisms Symposium, Pasadena, California, May 19–21 (1999) Gross, D., Messner, D.: The able deployable articulated mast–enabling technology for the shuttle radar topography mission. In: Proceedings of the 33rd Aerospace Mechanisms Symposium, Pasadena, California, May 19–21 (1999)
13.
Zurück zum Zitat Hayashi, H., Takehara, S., Terumichi, Y.: Numerical approach for flexible body motion with large displacement and time-varying length. In: The 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, BEXCO, Busan, Korea, June 30–July 3 (2014) Hayashi, H., Takehara, S., Terumichi, Y.: Numerical approach for flexible body motion with large displacement and time-varying length. In: The 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, BEXCO, Busan, Korea, June 30–July 3 (2014)
14.
Zurück zum Zitat Terumichi, Y., Kaczmarczyk, S., Sogabe, K.: Numerical approach in the analysis of flexible body motion with time-varying length and large displacement using multiple time scales. In: The 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland, May 25–27 (2010) Terumichi, Y., Kaczmarczyk, S., Sogabe, K.: Numerical approach in the analysis of flexible body motion with time-varying length and large displacement using multiple time scales. In: The 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland, May 25–27 (2010)
15.
Zurück zum Zitat Hong, D.F., Ren, G.X.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 26, 91–106 (2011)MathSciNetCrossRefMATH Hong, D.F., Ren, G.X.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 26, 91–106 (2011)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Hyldahl, P., Mikkola, A., Balling, O.: A thin plate element based on the combined arbitrary Lagrange–Euler and absolute nodal coordinate formulations. Proc. Inst. Mech. Eng. Part K J Multi-Body Dyn. 227, 211–219 (2013) Hyldahl, P., Mikkola, A., Balling, O.: A thin plate element based on the combined arbitrary Lagrange–Euler and absolute nodal coordinate formulations. Proc. Inst. Mech. Eng. Part K J Multi-Body Dyn. 227, 211–219 (2013)
17.
Zurück zum Zitat Yang, S., Deng, Z.Q., Sun, J., et al.: A variable-length beam element incorporating the effect of spinning. Lat. Am. J. Solids Struct. 14, 1506–1528 (2017)CrossRef Yang, S., Deng, Z.Q., Sun, J., et al.: A variable-length beam element incorporating the effect of spinning. Lat. Am. J. Solids Struct. 14, 1506–1528 (2017)CrossRef
18.
Zurück zum Zitat Hong, D.F., Tang, J.L., Ren, G.X.: Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation. J. Fluids Struct. 27, 1137–1148 (2011)CrossRef Hong, D.F., Tang, J.L., Ren, G.X.: Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation. J. Fluids Struct. 27, 1137–1148 (2011)CrossRef
19.
Zurück zum Zitat Shabana, A.A.: Definition of ANCF finite elements. J. Comput. Nonlinear Dyn. 10, 054506 (2015)CrossRef Shabana, A.A.: Definition of ANCF finite elements. J. Comput. Nonlinear Dyn. 10, 054506 (2015)CrossRef
20.
Zurück zum Zitat Sun, J.L., Tian, Q., Hu, H.Y., et al.: Topology optimization of a flexible multibody system with variable-length bodies described by ALE–ANCF. Nonlinear Dyn. 93, 413–441 (2018)CrossRefMATH Sun, J.L., Tian, Q., Hu, H.Y., et al.: Topology optimization of a flexible multibody system with variable-length bodies described by ALE–ANCF. Nonlinear Dyn. 93, 413–441 (2018)CrossRefMATH
21.
Zurück zum Zitat Sun, J.L., Tian, Q., Hu, H.Y., et al.: Simultaneous topology and size optimization of a 3D variable-length structure described by the ALE–ANCF. Mech. Mach. Theory 129, 80–105 (2018)CrossRef Sun, J.L., Tian, Q., Hu, H.Y., et al.: Simultaneous topology and size optimization of a 3D variable-length structure described by the ALE–ANCF. Mech. Mach. Theory 129, 80–105 (2018)CrossRef
22.
Zurück zum Zitat Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, pp. 16–21. Pearson Education, Inc., London (2002) Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, pp. 16–21. Pearson Education, Inc., London (2002)
23.
Zurück zum Zitat Brüls, O., Arnold, M.: The generalized-α scheme as a linear multistep integrator: toward a general mechatronic simulator. J. Comput. Nonlinear Dyn. 3, 041007 (2008)CrossRef Brüls, O., Arnold, M.: The generalized-α scheme as a linear multistep integrator: toward a general mechatronic simulator. J. Comput. Nonlinear Dyn. 3, 041007 (2008)CrossRef
24.
Zurück zum Zitat Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)CrossRef Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)CrossRef
25.
Zurück zum Zitat Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized α-method. J. Appl. Mech. 60, 371–375 (1993)MathSciNetCrossRefMATH Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized α-method. J. Appl. Mech. 60, 371–375 (1993)MathSciNetCrossRefMATH
26.
27.
Zurück zum Zitat Zupan, D., Saje, M.: Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Comput. Methods Appl. Mech. Eng. 192, 5209–5248 (2003)MathSciNetCrossRefMATH Zupan, D., Saje, M.: Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Comput. Methods Appl. Mech. Eng. 192, 5209–5248 (2003)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Zhang, R., Zhong, H.: Weak form quadrature element analysis of spatial geometrically exact shear-rigid beams. Finite Elem. Anal. Des. 87, 22–31 (2014)MathSciNetCrossRef Zhang, R., Zhong, H.: Weak form quadrature element analysis of spatial geometrically exact shear-rigid beams. Finite Elem. Anal. Des. 87, 22–31 (2014)MathSciNetCrossRef
29.
Zurück zum Zitat Zupan, E., Saje, M., Zupan, D.: The quaternion-based three-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 198, 3944–3956 (2009)MathSciNetCrossRefMATH Zupan, E., Saje, M., Zupan, D.: The quaternion-based three-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 198, 3944–3956 (2009)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Park, S., Hong, H.Y., Chung, J.: Vibrations of an axially moving beam with deployment or retraction. AIAA J. 51, 686–696 (2013)CrossRef Park, S., Hong, H.Y., Chung, J.: Vibrations of an axially moving beam with deployment or retraction. AIAA J. 51, 686–696 (2013)CrossRef
31.
Zurück zum Zitat Chang, J., Lin, W., Huang, C., et al.: Vibration and stability of an axially moving Rayleigh beam. Appl. Math. Model. 34, 1482–1497 (2010)MathSciNetCrossRefMATH Chang, J., Lin, W., Huang, C., et al.: Vibration and stability of an axially moving Rayleigh beam. Appl. Math. Model. 34, 1482–1497 (2010)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Al-Bedoor, B.O., Khulief, Y.A.: Vibrational motion of an elastic beam with prismatic and revolute joints. J. Sound Vib. 190, 195–206 (1996)CrossRef Al-Bedoor, B.O., Khulief, Y.A.: Vibrational motion of an elastic beam with prismatic and revolute joints. J. Sound Vib. 190, 195–206 (1996)CrossRef
Metadaten
Titel
Axially variable-length solid element of absolute nodal coordinate formulation
verfasst von
Jialiang Sun
Qiang Tian
Haiyan Hu
Niels L. Pedersen
Publikationsdatum
04.02.2019
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2019
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0823-7

Weitere Artikel der Ausgabe 3/2019

Acta Mechanica Sinica 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.