Skip to main content
Erschienen in: Wireless Personal Communications 4/2017

14.07.2016

Balanced and Multi-objective Optimized Opportunistic Routing for Underwater Sensor Networks

verfasst von: N. Kanthimathi, Dejey

Erschienen in: Wireless Personal Communications | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Underwater sensor communication medium has been motivated in the recent years, to explore probing targets in the area of interest within the ocean. The main challenge in acoustic sensor networks is to maintain the energy level balance among the nodes, throughout the entire lifetime of the network. Hence, a Balanced Multi-objective Optimized Opportunistic Routing (BMOOR) is proposed to forward the packet through multi-hop from downstream node to upstream node, so as to reach the sink at the surface. The proposed method refashions the nodes based on the dynamic estimations with respect to energy and the selection of optimal forwarders along the depth in a three dimensional network. In contrast to the existing techniques, the proposed protocol does not require spatial location, which is very expensive in UWSN. This in turn overcomes the fear of the single node getting trapped during greedy forwarding. The proposed method is further optimized using meta-heuristic, generation based bio-inspired algorithm (Bat) for delay minimization and delivery ratio maximization. Bat algorithm optimizes the opportunistic path by random fly with respect to fitness till it converges to an optimal pareto front, thereby the network lifetime is enhanced. Extensive simulation study using NS2 with an underwater simulation package proved that BMOOR contributes significant performance improvements over other representative UASN routing protocols.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khalfallah, Z., et al. (2014). Overview: Communication carriers for underwater sensor networks. In Network of the Future (NOF), 2014 international conference and workshop on the. IEEE. Khalfallah, Z., et al. (2014). Overview: Communication carriers for underwater sensor networks. In Network of the Future (NOF), 2014 international conference and workshop on the. IEEE.
2.
Zurück zum Zitat Elliott, J. (2005). An Analysis of underwater oil recovery techniques. In International oil spill conference (Vol. 2005, No. 1). American Petroleum Institute. Elliott, J. (2005). An Analysis of underwater oil recovery techniques. In International oil spill conference (Vol. 2005, No. 1). American Petroleum Institute.
3.
Zurück zum Zitat Mohamed, N., et al. (2010). Monitoring underwater pipelines using sensor networks. In High Performance computing and communications (HPCC), 2010 12th IEEE International Conference on. IEEE. Mohamed, N., et al. (2010). Monitoring underwater pipelines using sensor networks. In High Performance computing and communications (HPCC), 2010 12th IEEE International Conference on. IEEE.
4.
Zurück zum Zitat John, H., et al. (2006) Research challenges and applications for underwater sensor networking. In Wireless communications and networking conference, 2006. WCNC 2006 (Vol. 1). John, H., et al. (2006) Research challenges and applications for underwater sensor networking. In Wireless communications and networking conference, 2006. WCNC 2006 (Vol. 1).
5.
Zurück zum Zitat Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: research challenges. Ad Hoc Networks, 3(3), 257–279.CrossRef Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: research challenges. Ad Hoc Networks, 3(3), 257–279.CrossRef
6.
Zurück zum Zitat Deng, J. (2009). Multihop/direct forwarding (MDF) for static wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 5(4), 35.CrossRef Deng, J. (2009). Multihop/direct forwarding (MDF) for static wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 5(4), 35.CrossRef
7.
Zurück zum Zitat Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on-demand distance vector (AODV) routing (No. RFC 3561). Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on-demand distance vector (AODV) routing (No. RFC 3561).
8.
Zurück zum Zitat Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. Mobile computing (pp. 153–181). New York: Springer. Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. Mobile computing (pp. 153–181). New York: Springer.
9.
Zurück zum Zitat Biswas, S., & Morris, R. (2005). ExOR: Opportunistic multi-hop routing for wireless networks. ACM SIGCOMM Computer Communication Review ACM, 35(4), 133–144.CrossRef Biswas, S., & Morris, R. (2005). ExOR: Opportunistic multi-hop routing for wireless networks. ACM SIGCOMM Computer Communication Review ACM, 35(4), 133–144.CrossRef
10.
Zurück zum Zitat Chachulski, S., Jennings, M., Katti, S., & Katabi, D. (2007). Trading structure for randomness in wireless opportunistic routing. ACM, 37(4), 169–180. Chachulski, S., Jennings, M., Katti, S., & Katabi, D. (2007). Trading structure for randomness in wireless opportunistic routing. ACM, 37(4), 169–180.
11.
Zurück zum Zitat Dubois-Ferriere, H., Grossglauser, M., & Vetterli, M. (2007). Least-cost opportunistic routing (No. LCAV-REPORT-2007-001). Dubois-Ferriere, H., Grossglauser, M., & Vetterli, M. (2007). Least-cost opportunistic routing (No. LCAV-REPORT-2007-001).
12.
Zurück zum Zitat Rozner, E., et al. (2009). SOAR: Simple opportunistic adaptive routing protocol for wireless mesh networks. IEEE Transactions on MOBILE Computing, 8(12), 1622–1635.CrossRef Rozner, E., et al. (2009). SOAR: Simple opportunistic adaptive routing protocol for wireless mesh networks. IEEE Transactions on MOBILE Computing, 8(12), 1622–1635.CrossRef
13.
Zurück zum Zitat Oh, S. C., et al. (2007). Multiobjective optimization of sensor network deployment by a genetic algorithm. In 2007 IEEE congress on evolutionary computation CEC 2007. IEEE. Oh, S. C., et al. (2007). Multiobjective optimization of sensor network deployment by a genetic algorithm. In 2007 IEEE congress on evolutionary computation CEC 2007. IEEE.
14.
Zurück zum Zitat Park, J., et al. (2014). QoS-aware directional flooding-based routing for underwater wireless sensor networks. In Proceedings of the international conference on underwater networks & Systems. ACM. Park, J., et al. (2014). QoS-aware directional flooding-based routing for underwater wireless sensor networks. In Proceedings of the international conference on underwater networks & Systems. ACM.
15.
Zurück zum Zitat Deb, K., et al. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on evolutionary Computation, 6(2), 182–197.MathSciNetCrossRef Deb, K., et al. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on evolutionary Computation, 6(2), 182–197.MathSciNetCrossRef
16.
Zurück zum Zitat Xie, P., Cui, J. H., & Lao, L. (2006). VBF: vector-based forwarding protocol for underwater sensor networks. In Networking 2006. Networking technologies, services, and protocols; performance of computer and communication networks; mobile and wireless communications systems (pp. 1216–1221). Springer Berlin Heidelberg. Xie, P., Cui, J. H., & Lao, L. (2006). VBF: vector-based forwarding protocol for underwater sensor networks. In Networking 2006. Networking technologies, services, and protocols; performance of computer and communication networks; mobile and wireless communications systems (pp. 1216–1221). Springer Berlin Heidelberg.
17.
Zurück zum Zitat Nicolaou, N., et al. (2007). Improving the robustness of location-based routing for underwater sensor networks. In OCEANS 2007-Europe. IEEE. Nicolaou, N., et al. (2007). Improving the robustness of location-based routing for underwater sensor networks. In OCEANS 2007-Europe. IEEE.
18.
Zurück zum Zitat Jornet, J. M., Stojanovic, M., & Zorzi, M. (2008). Focused beam routing protocol for underwater acoustic networks. In Proceedings of the third ACM international workshop on underwater networks. ACM. Jornet, J. M., Stojanovic, M., & Zorzi, M. (2008). Focused beam routing protocol for underwater acoustic networks. In Proceedings of the third ACM international workshop on underwater networks. ACM.
19.
Zurück zum Zitat Chen, J., Wu, X., & Chen, G. (2008). REBAR: A reliable and energy balanced routing algorithm for UWSNs. In 2008 Seventh international conference on grid and cooperative computing. IEEE. Chen, J., Wu, X., & Chen, G. (2008). REBAR: A reliable and energy balanced routing algorithm for UWSNs. In 2008 Seventh international conference on grid and cooperative computing. IEEE.
20.
Zurück zum Zitat Hwang, D., & Kim, D. (2008). DFR: Directional flooding-based routing protocol for underwater sensor networks. In OCEANS 2008 . IEEE. Hwang, D., & Kim, D. (2008). DFR: Directional flooding-based routing protocol for underwater sensor networks. In OCEANS 2008 . IEEE.
21.
Zurück zum Zitat Liang, W., et al. (2007). Information-carrying based routing protocol for underwater acoustic sensor network. In 2007 International conference on mechatronics and automation. IEEE. Liang, W., et al. (2007). Information-carrying based routing protocol for underwater acoustic sensor network. In 2007 International conference on mechatronics and automation. IEEE.
22.
Zurück zum Zitat Yan, H., Shi, Z. J., & Cui, J. H. (2008). DBR: depth-based routing for underwater sensor networks. In International conference on research in networking (pp. 72–86). Springer Berlin Heidelberg. Yan, H., Shi, Z. J., & Cui, J. H. (2008). DBR: depth-based routing for underwater sensor networks. In International conference on research in networking (pp. 72–86). Springer Berlin Heidelberg.
23.
Zurück zum Zitat Gopi, S., et al. (2008). Path unaware layered routing protocol (PULRP) with non-uniform node distribution for underwater sensor networks. Wireless Communications and Mobile Computing, 8(8), 1045–1060.CrossRef Gopi, S., et al. (2008). Path unaware layered routing protocol (PULRP) with non-uniform node distribution for underwater sensor networks. Wireless Communications and Mobile Computing, 8(8), 1045–1060.CrossRef
24.
Zurück zum Zitat Ayaz, M., & Abdullah, A. (2009). Hop-by-hop dynamic addressing based (H2-DAB) routing protocol for underwater wireless sensor networks. In Information and multimedia technology, 2009. ICIMT’09. International Conference on IEEE. Ayaz, M., & Abdullah, A. (2009). Hop-by-hop dynamic addressing based (H2-DAB) routing protocol for underwater wireless sensor networks. In Information and multimedia technology, 2009. ICIMT’09. International Conference on IEEE.
25.
Zurück zum Zitat Hu, Tiansi, & Fei, Yunsi. (2010). QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing, 9(6), 796–809.CrossRef Hu, Tiansi, & Fei, Yunsi. (2010). QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing, 9(6), 796–809.CrossRef
26.
Zurück zum Zitat Gopi, S., et al. (2010). E-PULRP: Energy optimized path unaware layered routing protocol for underwater sensor networks. IEEE Transactions on Wireless Communications, 9(11), 3391–3401.CrossRef Gopi, S., et al. (2010). E-PULRP: Energy optimized path unaware layered routing protocol for underwater sensor networks. IEEE Transactions on Wireless Communications, 9(11), 3391–3401.CrossRef
27.
Zurück zum Zitat Wahid, A., & Kim, D. (2012). An energy efficient localization-free routing protocol for underwater wireless sensor networks. International journal of distributed sensor networks, 2012. Wahid, A., & Kim, D. (2012). An energy efficient localization-free routing protocol for underwater wireless sensor networks. International journal of distributed sensor networks, 2012.
28.
Zurück zum Zitat Xu, M., & Liu, G. (2013). A multipopulation firefly algorithm for correlated data routing in underwater wireless sensor networks. International Journal of Distributed Sensor Networks, 2013, 1–14. Xu, M., & Liu, G. (2013). A multipopulation firefly algorithm for correlated data routing in underwater wireless sensor networks. International Journal of Distributed Sensor Networks, 2013, 1–14.
29.
Zurück zum Zitat Rahman, R. H., et al. (2013). Loarp: A low overhead routing protocol for underwater acoustic sensor networks. Journal of Networks, 8(2), 317–330.CrossRef Rahman, R. H., et al. (2013). Loarp: A low overhead routing protocol for underwater acoustic sensor networks. Journal of Networks, 8(2), 317–330.CrossRef
30.
Zurück zum Zitat Zhang, S., Li, D., & Chen, J. (2013). A link-state based adaptive feedback routing for underwater acoustic sensor networks. IEEE Sensors Journal, 13(11), 4402–4412.CrossRef Zhang, S., Li, D., & Chen, J. (2013). A link-state based adaptive feedback routing for underwater acoustic sensor networks. IEEE Sensors Journal, 13(11), 4402–4412.CrossRef
31.
Zurück zum Zitat Lee, U., et al. (2010). Pressure Routing for underwater sensor networks. In INFOCOM. Lee, U., et al. (2010). Pressure Routing for underwater sensor networks. In INFOCOM.
32.
Zurück zum Zitat Wahid, A., Sungwon L., & Kim, D. (2011). An energy-efficient routing protocol for UWSNs using physical distance and residual energy. In OCEANS, 2011 IEEE-Spain. IEEE, 2011. Wahid, A., Sungwon L., & Kim, D. (2011). An energy-efficient routing protocol for UWSNs using physical distance and residual energy. In OCEANS, 2011 IEEE-Spain. IEEE, 2011.
33.
Zurück zum Zitat Noh, Y., et al. (2013). VAPR: void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12(5), 895–908.CrossRef Noh, Y., et al. (2013). VAPR: void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12(5), 895–908.CrossRef
34.
Zurück zum Zitat Doerner, K., et al. (2004). Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 131(1–4), 79–99.MathSciNetCrossRefMATH Doerner, K., et al. (2004). Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 131(1–4), 79–99.MathSciNetCrossRefMATH
35.
Zurück zum Zitat K, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety, 91(9), 992–1007.CrossRef K, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety, 91(9), 992–1007.CrossRef
36.
Zurück zum Zitat Reyes-Sierra, M., & Coello, C. C. (2006). Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research, 2(3), 287–308.MathSciNet Reyes-Sierra, M., & Coello, C. C. (2006). Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research, 2(3), 287–308.MathSciNet
37.
Zurück zum Zitat Yang, X.-S., & He, X. (2013). Bat algorithm: Literature review and applications. International Journal of Bio-Inspired Computation, 5(3), 141–149.CrossRef Yang, X.-S., & He, X. (2013). Bat algorithm: Literature review and applications. International Journal of Bio-Inspired Computation, 5(3), 141–149.CrossRef
38.
Zurück zum Zitat Yang, X.-S. (2011). Bat algorithm for multi-objective optimisation. International Journal of Bio-Inspired Computation, 3(5), 267–274.CrossRef Yang, X.-S. (2011). Bat algorithm for multi-objective optimisation. International Journal of Bio-Inspired Computation, 3(5), 267–274.CrossRef
39.
Zurück zum Zitat Xie, P., et al. (2009). Aqua-sim: an NS-2 based simulator for underwater sensor networks. In OCEANS 2009, MTS/IEEE biloxi-marine technology for our future: global and local challenges. IEEE. Xie, P., et al. (2009). Aqua-sim: an NS-2 based simulator for underwater sensor networks. In OCEANS 2009, MTS/IEEE biloxi-marine technology for our future: global and local challenges. IEEE.
40.
Zurück zum Zitat Wahid, A., Lee, S., Kim, D., & Lim, K. S. (2014). MRP: A localization-free multi-layered routing protocol for underwater wireless sensor networks. Wireless personal communications, 77(4), 2997–3012.CrossRef Wahid, A., Lee, S., Kim, D., & Lim, K. S. (2014). MRP: A localization-free multi-layered routing protocol for underwater wireless sensor networks. Wireless personal communications, 77(4), 2997–3012.CrossRef
Metadaten
Titel
Balanced and Multi-objective Optimized Opportunistic Routing for Underwater Sensor Networks
verfasst von
N. Kanthimathi
Dejey
Publikationsdatum
14.07.2016
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3495-2

Weitere Artikel der Ausgabe 4/2017

Wireless Personal Communications 4/2017 Zur Ausgabe

Neuer Inhalt