Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 7/2020

19.02.2020

Band-correlated barrier-hopping conduction in α-NiMoO4 micro-crystals and comparison of its energy storage performance with MWCNT-integrated complex

verfasst von: S. Karmakar, D. Behera

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Monoclinic nickel molybdate (NiMoO4) micro-crystals were synthesized via a conventional solid-state synthesis route with a prospective to investigate its conductivity response with high-temperature evolution and phenomenal electrochemical performance for supercapacitor application. The tenacious phase formation, Raman active phonon vibration and metal oxide (Ni–O, Mo–O) stretching vibration in octahedral and tetrahedral sites of as-synthesized NiMoO4 were confirmed by X-ray diffraction techniques, Raman and FTIR spectra. The UV-DRS absorbance spectra of NiMoO4 exhibits several effective absorption peaks in the UV–Visible wavelength range (200–800 nm). The optical band gap of NiMoO4 was estimated at 2.50 eV experimentally with the famous Kubelka–Munk equation and theoretically correlated with the result obtained from the density of states (DOS) calculation. The saturation magnetization of NiMoO4 diminished from 0.0026 to 0.0013 emu g−1. significantly due to the embodiment of MWCNT but the coercivity maintain a minute change. Lessening of real (Z′) and imaginary impedance (Z″) with temperature was observed with high-temperature evolution (633–773 K) and the Nyquist plots were well fitted with equivalent circuit model (QR)(QR)(CR) network. The temperature-dependent frequency exponent (n) suggested the band-correlated barrier-hopping process in high temperature for the conduction mechanism of NiMoO4. The maximum specific capacitance (Csp) was estimated 518 F g−1 for NiMoO4 at current density 5 Ag−1 and its value intensified up to 1050 A g−1 at current density 5 Ag−1 in MWCNT-integrated NiMoO4. Imperatively, the upmost energy density 66.12 Wh Kg−1 was detected at power density 1075 W Kg−1 for MWCNT-blended NiMoO4 which is significantly larger than pristine NiMoO4 (energy density 42.28 Wh Kg−1 at power density 612 W Kg−1) at a current density 5 Ag−1, which reveals their great potential application as a supercapacitor and energy storage technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Adv. Sci. 4, 1600539 (2017) W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Adv. Sci. 4, 1600539 (2017)
2.
Zurück zum Zitat P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008) P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)
3.
Zurück zum Zitat F. Sun, J. Gao, Y. Zhu, X. Pi, L. Wang, X. Liu, Y. Qin, A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode. Sci. Rep. 7, 40990 (2017) F. Sun, J. Gao, Y. Zhu, X. Pi, L. Wang, X. Liu, Y. Qin, A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode. Sci. Rep. 7, 40990 (2017)
4.
Zurück zum Zitat A.L. Yan, X.C. Wang, J.P. Cheng, Research progress of NiMn layered double hydroxides for supercapacitors: a review. Nanomaterials 8, 747 (2018) A.L. Yan, X.C. Wang, J.P. Cheng, Research progress of NiMn layered double hydroxides for supercapacitors: a review. Nanomaterials 8, 747 (2018)
5.
Zurück zum Zitat L. Huang, W. Zhang, J. Xiang, H. Xu, G. Li, Y. Huang, Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors. Sci. Rep. 6, 31465 (2016) L. Huang, W. Zhang, J. Xiang, H. Xu, G. Li, Y. Huang, Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors. Sci. Rep. 6, 31465 (2016)
6.
Zurück zum Zitat X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, M. Liu, Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high- performance supercapacitors. Nano Energy 11, 154–161 (2015) X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, M. Liu, Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high- performance supercapacitors. Nano Energy 11, 154–161 (2015)
7.
Zurück zum Zitat K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, L. Zhou, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8, 14264 (2017) K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, L. Zhou, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8, 14264 (2017)
8.
Zurück zum Zitat W.D. Xue, W.J. Wang, Y.F. Fu, D.X. He, F.Y. Zeng, R. Zhao, Rational synthesis of honeycomb-like NiCo2O4@NiMoO4 core/shell nanofilm arrays on Ni foam for high-performance supercapacitors. Mater. Lett. 186, 34–37 (2017) W.D. Xue, W.J. Wang, Y.F. Fu, D.X. He, F.Y. Zeng, R. Zhao, Rational synthesis of honeycomb-like NiCo2O4@NiMoO4 core/shell nanofilm arrays on Ni foam for high-performance supercapacitors. Mater. Lett. 186, 34–37 (2017)
9.
Zurück zum Zitat C. Wang, E. Zhou, W. He, X. Deng, J. Huang, M. Ding, X. Wei, X. Liu, X. Xu, NiCo2O4-based supercapacitor nanomaterials. Nanomaterials 7, 41 (2017) C. Wang, E. Zhou, W. He, X. Deng, J. Huang, M. Ding, X. Wei, X. Liu, X. Xu, NiCo2O4-based supercapacitor nanomaterials. Nanomaterials 7, 41 (2017)
10.
Zurück zum Zitat Y. Li, S. Tan, J. Jiang, Z. Huang, X. Tan, Room-temperature synthesis, growth mechanism and properties of uniform CdMoO4 nano-octahedra. CrystEngComm 13, 2649–2655 (2011) Y. Li, S. Tan, J. Jiang, Z. Huang, X. Tan, Room-temperature synthesis, growth mechanism and properties of uniform CdMoO4 nano-octahedra. CrystEngComm 13, 2649–2655 (2011)
11.
Zurück zum Zitat P.R. Jothi, K. Shanthi, R.R. Salunkhe, M. Pramanik, V. Malgras, S.M. Alshehri, Y. Yamauchi, Synthesis and characterization of α-NiMoO4 nanorods for supercapacitor application. Eur. J. Inorg. Chem. 22, 3694–3699 (2015) P.R. Jothi, K. Shanthi, R.R. Salunkhe, M. Pramanik, V. Malgras, S.M. Alshehri, Y. Yamauchi, Synthesis and characterization of α-NiMoO4 nanorods for supercapacitor application. Eur. J. Inorg. Chem. 22, 3694–3699 (2015)
12.
Zurück zum Zitat A. Steinbrunn, A. Tahri, J.C. Colson, Electrical transport in polycrystalline nickel molybdate NiMoO4. Solid State Ion. 49, 99–103 (1991) A. Steinbrunn, A. Tahri, J.C. Colson, Electrical transport in polycrystalline nickel molybdate NiMoO4. Solid State Ion. 49, 99–103 (1991)
13.
Zurück zum Zitat J. Fu, Y. Zhang, H. Zhao, R. Jiang, R. Zhang, Core/sheath structured ultralong MnOx/PPy nanowires feature improved conductivity and stability for supercapacitor. J. Colloid Interface Sci. 559, 39–44 (2020) J. Fu, Y. Zhang, H. Zhao, R. Jiang, R. Zhang, Core/sheath structured ultralong MnOx/PPy nanowires feature improved conductivity and stability for supercapacitor. J. Colloid Interface Sci. 559, 39–44 (2020)
14.
Zurück zum Zitat Y. Xia, B. Sun, Y. Wei, B. Tao, Y. Zhao, Simple sol-gel method synthesis of 3-dimension Li4Ti5O12-TiO2 nanostructures using butterfly wings as biotemplates for high rate performance lithium-ion batteries. J. Alloys Compd. 705, 58–63 (2017) Y. Xia, B. Sun, Y. Wei, B. Tao, Y. Zhao, Simple sol-gel method synthesis of 3-dimension Li4Ti5O12-TiO2 nanostructures using butterfly wings as biotemplates for high rate performance lithium-ion batteries. J. Alloys Compd. 705, 58–63 (2017)
15.
Zurück zum Zitat B. Sun, S. Mao, S. Zhu, G. Zhou, Y. Xia, Y. Zhao, Improved rate and cycling performances of electrodes based on BiFeO3 nanoflakes by compositing with organic pectin for advanced rechargeable Na-ion batteries. ACS Appl. Nano Mater. 1, 1291–1299 (2018) B. Sun, S. Mao, S. Zhu, G. Zhou, Y. Xia, Y. Zhao, Improved rate and cycling performances of electrodes based on BiFeO3 nanoflakes by compositing with organic pectin for advanced rechargeable Na-ion batteries. ACS Appl. Nano Mater. 1, 1291–1299 (2018)
16.
Zurück zum Zitat V. Girard, D. Chiche, A. Baudot, D.B. Bachi, L. Lemaitre, V.M. Baslé, A. Rochet, V. Briois, C. Geantet, In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials. Phys. Chem. Chem. Phys. 21, 8569–8579 (2019) V. Girard, D. Chiche, A. Baudot, D.B. Bachi, L. Lemaitre, V.M. Baslé, A. Rochet, V. Briois, C. Geantet, In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials. Phys. Chem. Chem. Phys. 21, 8569–8579 (2019)
17.
Zurück zum Zitat W.X. Zhao, B. Sun, Y.H. Liu, L.J. Wei, H.W. Li, P. Chen, A light-modified ferroelectric resistive switching behavior in Ag/BaMoO4/FTO device at ambient temperature. J Solid State Chem 220, 32–36 (2014) W.X. Zhao, B. Sun, Y.H. Liu, L.J. Wei, H.W. Li, P. Chen, A light-modified ferroelectric resistive switching behavior in Ag/BaMoO4/FTO device at ambient temperature. J Solid State Chem 220, 32–36 (2014)
18.
Zurück zum Zitat L.-C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. Iijima, The smallest carbon nanotube. Nature 408, 50 (2000) L.-C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. Iijima, The smallest carbon nanotube. Nature 408, 50 (2000)
19.
Zurück zum Zitat C. Qing, C. Yang, M. Chen, W. Li, S. Wang, Y. Tang, Design of oxygen-deficient NiMoO4 nanoflake and nanorod arrays with enhanced supercapacitive performance. Chem. Eng. J. 354, 182 (2018) C. Qing, C. Yang, M. Chen, W. Li, S. Wang, Y. Tang, Design of oxygen-deficient NiMoO4 nanoflake and nanorod arrays with enhanced supercapacitive performance. Chem. Eng. J. 354, 182 (2018)
20.
Zurück zum Zitat B. Wang, S. Li, X. Wu, J. Liu, W. Tian, Hierarchical NiMoO4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage. Phys. Chem. Chem. Phys. 18, 908 (2016) B. Wang, S. Li, X. Wu, J. Liu, W. Tian, Hierarchical NiMoO4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage. Phys. Chem. Chem. Phys. 18, 908 (2016)
21.
Zurück zum Zitat D. Guo, Y. Luo, X. Yu, Q. Li, T. Wang, High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174–182 (2014) D. Guo, Y. Luo, X. Yu, Q. Li, T. Wang, High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174–182 (2014)
22.
Zurück zum Zitat J. Hong, Y.-W. Lee, B. Hou, W. Ko, J. Lee, S. Pak, J.P. Hong, S.M. Morris, S.N. Cha, J.I. Sohn, J.M. Kim, Solubility-dependent NiMoO4 Nanoarchitectures: Direct correlation between rationally designed structure and electrochemical pseudo-kinetics. ACS Appl. Mater. Interfaces 8, 35227–35234 (2016) J. Hong, Y.-W. Lee, B. Hou, W. Ko, J. Lee, S. Pak, J.P. Hong, S.M. Morris, S.N. Cha, J.I. Sohn, J.M. Kim, Solubility-dependent NiMoO4 Nanoarchitectures: Direct correlation between rationally designed structure and electrochemical pseudo-kinetics. ACS Appl. Mater. Interfaces 8, 35227–35234 (2016)
23.
Zurück zum Zitat Y. Zhang, H.-L. Gao, X.-D. Jia, S.-W. Wang, J. Yan, H.-W. Luo, K.-Z. Gao, H. Fang, A.-Q. Zhang, L.-Z. Wang, NiMoO4 nanorods supported on nickel foam for high-performance supercapacitor electrode materials. J. Renew. Sustain. Energy 10, 054101 (2018) Y. Zhang, H.-L. Gao, X.-D. Jia, S.-W. Wang, J. Yan, H.-W. Luo, K.-Z. Gao, H. Fang, A.-Q. Zhang, L.-Z. Wang, NiMoO4 nanorods supported on nickel foam for high-performance supercapacitor electrode materials. J. Renew. Sustain. Energy 10, 054101 (2018)
24.
Zurück zum Zitat D. Guo, P. Zhang, H. Zhang, X. Yu, J. Zhu, Q. Li, T. Wang, NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. J. Mater. Chem. A 1, 9024–9027 (2013) D. Guo, P. Zhang, H. Zhang, X. Yu, J. Zhu, Q. Li, T. Wang, NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. J. Mater. Chem. A 1, 9024–9027 (2013)
25.
Zurück zum Zitat P.R. Jothi, S. Kannan, G. Velayutham, Enhanced methanol electro-oxidation over in-situ carbon and graphene supported one-dimensional NiMoO4 nanorod. Power Sources 277, 350–359 (2015) P.R. Jothi, S. Kannan, G. Velayutham, Enhanced methanol electro-oxidation over in-situ carbon and graphene supported one-dimensional NiMoO4 nanorod. Power Sources 277, 350–359 (2015)
26.
Zurück zum Zitat D. Cai, B. Liu, D. Wang, Y. Liu, L. Wang, H. Li, Y. Wang, C. Wang, Q. Li, T. Wang, Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets. Electrochim. Acta 125, 294–301 (2014) D. Cai, B. Liu, D. Wang, Y. Liu, L. Wang, H. Li, Y. Wang, C. Wang, Q. Li, T. Wang, Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets. Electrochim. Acta 125, 294–301 (2014)
27.
Zurück zum Zitat D. Cai, D. Wang, B. Liu, Y. Wang, Y. Liu, L. Wang, H. Li, Ch. Huang, Q. Li, T. Wang, Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl. Mater. Interfaces 5, 12905–12910 (2013) D. Cai, D. Wang, B. Liu, Y. Wang, Y. Liu, L. Wang, H. Li, Ch. Huang, Q. Li, T. Wang, Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl. Mater. Interfaces 5, 12905–12910 (2013)
28.
Zurück zum Zitat H.O. Hassani, F.A. Wadaani, Preparation, characterization and catalytic activity of nickel molybdate (NiMoO4) nanoparticles. Molecules 23, 273 (2018) H.O. Hassani, F.A. Wadaani, Preparation, characterization and catalytic activity of nickel molybdate (NiMoO4) nanoparticles. Molecules 23, 273 (2018)
29.
Zurück zum Zitat K. Edaa, Y. Katoa, Y. Ohshiroa, T. Sugitania, M.S. Whittingham, Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO4.nH2O. J. Solid State Chem. 183, 1334–1339 (2010) K. Edaa, Y. Katoa, Y. Ohshiroa, T. Sugitania, M.S. Whittingham, Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO4.nH2O. J. Solid State Chem. 183, 1334–1339 (2010)
30.
Zurück zum Zitat H. Ehrenberg, I. Svoboda, G. Wltschek, M. Wiesmann, F. Trouw, H. Weitzel, H. Fuess, Crystal and magnetic structure of α-NiMoO4. J. Magn. Magn. Mater. 150, 371–376 (1995) H. Ehrenberg, I. Svoboda, G. Wltschek, M. Wiesmann, F. Trouw, H. Weitzel, H. Fuess, Crystal and magnetic structure of α-NiMoO4. J. Magn. Magn. Mater. 150, 371–376 (1995)
31.
Zurück zum Zitat K. Ramachandran, T. R. Kumar, K. J. Babu, G. G. Kumar, Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications. Sci. Rep. 6, 36583 (2016) K. Ramachandran, T. R. Kumar, K. J. Babu, G. G. Kumar, Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications. Sci. Rep. 6, 36583 (2016)
32.
Zurück zum Zitat H. M. A.-Dayem, Dynamic phenomena during reduction of α-NiMoO4 in different atmospheres: in situ thermo-Raman spectroscopy study. Ind. Eng. Chem. Res. 46, 2466 (2007) H. M. A.-Dayem, Dynamic phenomena during reduction of α-NiMoO4 in different atmospheres: in situ thermo-Raman spectroscopy study. Ind. Eng. Chem. Res. 46, 2466 (2007)
33.
Zurück zum Zitat R. Zavoianu, C.R. Dias, A.P.V. Soares, M.F. Portela, Oxidative dehydrogenation of i-butane over nanostructured silica-supported NiMoO4 catalysts with low content of active phase. Appl. Catal. A 298, 40–49 (2006) R. Zavoianu, C.R. Dias, A.P.V. Soares, M.F. Portela, Oxidative dehydrogenation of i-butane over nanostructured silica-supported NiMoO4 catalysts with low content of active phase. Appl. Catal. A 298, 40–49 (2006)
34.
Zurück zum Zitat A. Maione, M. Devillers, Solid solutions of Ni and Co molybdates in silica-dispersed and bulk catalysts prepared by sol-gel and citrate methods. J. Solid State Chem. 177, 2339–2349 (2004) A. Maione, M. Devillers, Solid solutions of Ni and Co molybdates in silica-dispersed and bulk catalysts prepared by sol-gel and citrate methods. J. Solid State Chem. 177, 2339–2349 (2004)
35.
Zurück zum Zitat J.Y. Zou, G.L. Schrader, Deposition of multiphase molybdate thin films by reactive sputtering. Thin Solid Films 324, 52–62 (1998) J.Y. Zou, G.L. Schrader, Deposition of multiphase molybdate thin films by reactive sputtering. Thin Solid Films 324, 52–62 (1998)
36.
Zurück zum Zitat W. Hu, J. Yu, X. Jiang, X. Liu, R. Jin, Y. Lu, L. Zhao, Y. Wu, Y. He, Enhanced photocatalytic activity of g-C3N4 via modification of NiMoO4 nanorods. Colloids Surf. A 514, 98 (2017) W. Hu, J. Yu, X. Jiang, X. Liu, R. Jin, Y. Lu, L. Zhao, Y. Wu, Y. He, Enhanced photocatalytic activity of g-C3N4 via modification of NiMoO4 nanorods. Colloids Surf. A 514, 98 (2017)
37.
Zurück zum Zitat K. Seevakan, A. Manikandan, P. Devendran, A. Shameem, T. Alagesan, Microwave combustion synthesis, magneto-optical and electrochemical properties of NiMoO4 nanoparticles for supercapacitor application. Ceram. Int. 44, 13879 (2018) K. Seevakan, A. Manikandan, P. Devendran, A. Shameem, T. Alagesan, Microwave combustion synthesis, magneto-optical and electrochemical properties of NiMoO4 nanoparticles for supercapacitor application. Ceram. Int. 44, 13879 (2018)
38.
Zurück zum Zitat S. Karmakar, A.K. Manna, S. Varma, D. Behera, Investigation of optical, electrical and magnetic properties of hexagonal NiTiO3 nanoparticles prepared via ultrasonic dispersion techniques for high power applications. Mater. Res. Express 5, 055037 (2018) S. Karmakar, A.K. Manna, S. Varma, D. Behera, Investigation of optical, electrical and magnetic properties of hexagonal NiTiO3 nanoparticles prepared via ultrasonic dispersion techniques for high power applications. Mater. Res. Express 5, 055037 (2018)
39.
Zurück zum Zitat S. Dey, R.A. Ricciardo, H.L. Cuthbert, P.M. Woodward, Metal-to-metal charge transfer in AWO4 (A = Mg, Mn Co, Ni, Cu, or Zn) compounds with the wolframite structure. Inorg. Chem. 53, 4394–4399 (2014) S. Dey, R.A. Ricciardo, H.L. Cuthbert, P.M. Woodward, Metal-to-metal charge transfer in AWO4 (A = Mg, Mn Co, Ni, Cu, or Zn) compounds with the wolframite structure. Inorg. Chem. 53, 4394–4399 (2014)
40.
Zurück zum Zitat L. Yang, J. Wang, Y. Wan, Y. Li, H. Xie, H. Cheng, H.J. Seo, Structure and effective visible-light-driven photocatalytic activity of α-NiMoO4 for degradation of methylene blue dye. J. Alloys Compd. 664, 756–763 (2016) L. Yang, J. Wang, Y. Wan, Y. Li, H. Xie, H. Cheng, H.J. Seo, Structure and effective visible-light-driven photocatalytic activity of α-NiMoO4 for degradation of methylene blue dye. J. Alloys Compd. 664, 756–763 (2016)
41.
Zurück zum Zitat S.K. Biswas, D. Dhak, A. Pathak, P. Pramanik, Chemical synthesis of environment-friendly nanosized yellow titanate pigments. Mater. Res. Bull. 43, 665–675 (2008) S.K. Biswas, D. Dhak, A. Pathak, P. Pramanik, Chemical synthesis of environment-friendly nanosized yellow titanate pigments. Mater. Res. Bull. 43, 665–675 (2008)
42.
Zurück zum Zitat S.F. Matar, A. Largeteau, G. Demazeau, AMoO4 (A = Mg, Ni) molybdates: Phase stabilities, electronic structures and chemical bonding properties from first principles. Solid State Sci. 12, 1779–1785 (2010) S.F. Matar, A. Largeteau, G. Demazeau, AMoO4 (A = Mg, Ni) molybdates: Phase stabilities, electronic structures and chemical bonding properties from first principles. Solid State Sci. 12, 1779–1785 (2010)
43.
Zurück zum Zitat A. Alborzi, S. Khademolhoseini, Nickel molybdate nanoparticles: synthesis, characterization, optical and photocatalytic properties. J. Mater. Sci: Mater. Electron. 27, 3963–3967 (2016) A. Alborzi, S. Khademolhoseini, Nickel molybdate nanoparticles: synthesis, characterization, optical and photocatalytic properties. J. Mater. Sci: Mater. Electron. 27, 3963–3967 (2016)
44.
Zurück zum Zitat S. Karmakar, S. Varma, D. Behera, Investigation of structural and electrical transport properties of nano-flower shaped NiCo2O4 supercapacitor electrode materials. J Alloys Compd. 757, 49–59 (2018) S. Karmakar, S. Varma, D. Behera, Investigation of structural and electrical transport properties of nano-flower shaped NiCo2O4 supercapacitor electrode materials. J Alloys Compd. 757, 49–59 (2018)
45.
Zurück zum Zitat W. Chen, W. Zhu, O.K. Tan, X.F. Chen, Frequency and temperature dependent impedance spectroscopy of cobalt ferrite composite thick films. J. Appl. Phys. 108, 034101 (2010) W. Chen, W. Zhu, O.K. Tan, X.F. Chen, Frequency and temperature dependent impedance spectroscopy of cobalt ferrite composite thick films. J. Appl. Phys. 108, 034101 (2010)
46.
Zurück zum Zitat S. Karmakar, B. Panda, B. Sahoo, K.L. Routray, S. Varma, D. Behera, A study on optical and dielectric properties of Ni-ZnO nanocomposite. Mater Sci Semicond Process 88, 198–206 (2018) S. Karmakar, B. Panda, B. Sahoo, K.L. Routray, S. Varma, D. Behera, A study on optical and dielectric properties of Ni-ZnO nanocomposite. Mater Sci Semicond Process 88, 198–206 (2018)
47.
Zurück zum Zitat S. Karmakar, D. Behera, Non-overlapping small polaron tunneling conduction coupled dielectric relaxation in weak ferromagnetic NiAl2O4. J. Phys. 31, 245701 (2019) S. Karmakar, D. Behera, Non-overlapping small polaron tunneling conduction coupled dielectric relaxation in weak ferromagnetic NiAl2O4. J. Phys. 31, 245701 (2019)
48.
Zurück zum Zitat A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977) A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)
49.
Zurück zum Zitat Y.B. Taher, A. Oueslati, N.K. Maaloul, K. Khirouni, M. Gargouri, Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Appl. Phys. A 120, 1537–1543 (2015) Y.B. Taher, A. Oueslati, N.K. Maaloul, K. Khirouni, M. Gargouri, Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Appl. Phys. A 120, 1537–1543 (2015)
50.
Zurück zum Zitat K.H. Mahmoud, F.M. Abdel-Rahim, K. Atef, Y.B. Saddeek, Dielectric dispersion in lithium–bismuth-borate glasses. Curr. Appl. Phys. 11, 55–60 (2011) K.H. Mahmoud, F.M. Abdel-Rahim, K. Atef, Y.B. Saddeek, Dielectric dispersion in lithium–bismuth-borate glasses. Curr. Appl. Phys. 11, 55–60 (2011)
51.
Zurück zum Zitat S. Karmakar, D. Behera, Almond-West type grain and grain boundary conduction-modified dielectric relaxation in NdCoO3. Appl. Phys. A 124, 745 (2018) S. Karmakar, D. Behera, Almond-West type grain and grain boundary conduction-modified dielectric relaxation in NdCoO3. Appl. Phys. A 124, 745 (2018)
52.
Zurück zum Zitat J. Sharma, N. Sharma, J. Parashar, V.K. Saxena, D. Bhatnagar, K.B. Sharma, Dielectric properties of nanocrystalline Co-Mg ferrites. J Alloys Compd. 649, 362–367 (2015) J. Sharma, N. Sharma, J. Parashar, V.K. Saxena, D. Bhatnagar, K.B. Sharma, Dielectric properties of nanocrystalline Co-Mg ferrites. J Alloys Compd. 649, 362–367 (2015)
53.
Zurück zum Zitat S. Ratha, C.S. Rout, Self-assembled flower-like ZnCo2O4 hierarchical superstructures for high capacity supercapacitors. RSC Adv. 5, 86551–86557 (2015) S. Ratha, C.S. Rout, Self-assembled flower-like ZnCo2O4 hierarchical superstructures for high capacity supercapacitors. RSC Adv. 5, 86551–86557 (2015)
54.
Zurück zum Zitat J.T. Zhang, J.Z. Ma, L.L. Zhang, P.Z. Guo, J.W. Jiang, X.S. Zhao, Template synthesis of tubular ruthenium oxides for supercapacitor applications. J. Phys. Chem. C 114, 13608–13613 (2010) J.T. Zhang, J.Z. Ma, L.L. Zhang, P.Z. Guo, J.W. Jiang, X.S. Zhao, Template synthesis of tubular ruthenium oxides for supercapacitor applications. J. Phys. Chem. C 114, 13608–13613 (2010)
55.
Zurück zum Zitat D.D. Han, P.C. Xu, X.Y. Jing, J. Wang, P.P. Yang, Q.H. Shen, J.Y. Liu, D.L. Song, Z. Gao, M.L. Zhang, Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. J. Power Sources 235, 45–53 (2013) D.D. Han, P.C. Xu, X.Y. Jing, J. Wang, P.P. Yang, Q.H. Shen, J.Y. Liu, D.L. Song, Z. Gao, M.L. Zhang, Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. J. Power Sources 235, 45–53 (2013)
56.
Zurück zum Zitat G.H. Yu, L.B. Hu, M. Vosgueritchian, H.L. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z.N. Bao, Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11, 2905–2911 (2011) G.H. Yu, L.B. Hu, M. Vosgueritchian, H.L. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z.N. Bao, Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11, 2905–2911 (2011)
57.
Zurück zum Zitat S.K. Meher, G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 115, 15646–15654 (2011) S.K. Meher, G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 115, 15646–15654 (2011)
58.
Zurück zum Zitat F. Yusoff, N. Mohamed , A. Azizan , S. Ab Ghani, The perovskite Ba0.5Sr0.5Co0.2Fe0.8O3-MWCNT modified glassy carbon electrode-its characterization and capacity in oxygen reduction reaction. Int. J. Electrochem. Sci. 11, 5766–5778 (2016) F. Yusoff, N. Mohamed , A. Azizan , S. Ab Ghani, The perovskite Ba0.5Sr0.5Co0.2Fe0.8O3-MWCNT modified glassy carbon electrode-its characterization and capacity in oxygen reduction reaction. Int. J. Electrochem. Sci. 11, 5766–5778 (2016)
Metadaten
Titel
Band-correlated barrier-hopping conduction in α-NiMoO4 micro-crystals and comparison of its energy storage performance with MWCNT-integrated complex
verfasst von
S. Karmakar
D. Behera
Publikationsdatum
19.02.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 7/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03094-3

Weitere Artikel der Ausgabe 7/2020

Journal of Materials Science: Materials in Electronics 7/2020 Zur Ausgabe

Neuer Inhalt