Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Basic Principles of Surface Plasmon Resonance

verfasst von : A. M. Heikal, Mohamed Farhat O. Hameed, S. S. A. Obayya

Erschienen in: Computational Photonic Sensors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, the basic concept concerning the surface plasmon phenomena is presented. Different types of surface plasmon wave (localized and propagating) are reviewed. Moreover, the thin metallic film surface plasmon waveguide is analyzed in order to show the symmetric and asymmetric modes. Finally, other types of surface plasmon waveguides are discussed to show the trade-off between the confinement of the field profile and the attenuation loss.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Economou, Surface plasmons in thin films. Phys. Rev. 182(2), 539–554 (1969)CrossRef E. Economou, Surface plasmons in thin films. Phys. Rev. 182(2), 539–554 (1969)CrossRef
2.
Zurück zum Zitat A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S.A. Obayya, Efficient polarization filter design based on plasmonic photonic crystal fiber. J. Lightwave Technol. 33(13), 2868–2875 (2015)CrossRef A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S.A. Obayya, Efficient polarization filter design based on plasmonic photonic crystal fiber. J. Lightwave Technol. 33(13), 2868–2875 (2015)CrossRef
3.
Zurück zum Zitat M.F.O. Hameed, R.T. Balat, A.M. Heikal, M.M. Abo-Elkhier, M.I. Abo el Maaty, S.S.A. Obayya, Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer demultiplexer. IEEE Photon. J. 7(5), 1–10 (2015)CrossRef M.F.O. Hameed, R.T. Balat, A.M. Heikal, M.M. Abo-Elkhier, M.I. Abo el Maaty, S.S.A. Obayya, Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer demultiplexer. IEEE Photon. J. 7(5), 1–10 (2015)CrossRef
4.
Zurück zum Zitat B.M. Younis, A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Coupling enhancement of plasmonic liquid photonic crystal fiber. Plasmonics 12(5), 1529–1535 (2016)CrossRef B.M. Younis, A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Coupling enhancement of plasmonic liquid photonic crystal fiber. Plasmonics 12(5), 1529–1535 (2016)CrossRef
5.
Zurück zum Zitat M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. J. 8(3), 1–12 (2016)CrossRef M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. J. 8(3), 1–12 (2016)CrossRef
6.
Zurück zum Zitat M.F.O. Hameed, Y.K.A. Alrayk, A.A. Shaalan, W.S. El Deeb, S.S.A. Obayya, Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophoton. 10(4), 046016 (2016)CrossRef M.F.O. Hameed, Y.K.A. Alrayk, A.A. Shaalan, W.S. El Deeb, S.S.A. Obayya, Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophoton. 10(4), 046016 (2016)CrossRef
7.
Zurück zum Zitat A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S.A. Obayya, Efficient polarization filter design based on plasmonic photonic crystal fiber. J. Lightwave Technol. 33(13), 2868–2875 (2015)CrossRef A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S.A. Obayya, Efficient polarization filter design based on plasmonic photonic crystal fiber. J. Lightwave Technol. 33(13), 2868–2875 (2015)CrossRef
8.
Zurück zum Zitat S.I. Azzam, M.F.O. Hameed, R.E.A. Shehata, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor, Optic. Quant. Electron. 48(2) (2016) S.I. Azzam, M.F.O. Hameed, R.E.A. Shehata, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor, Optic. Quant. Electron. 48(2) (2016)
9.
Zurück zum Zitat F.F.K. Hussain, A.M. Heikal, M.F.O. Hameed, J. El-Azab, W.S. Abdelaziz, S.S.A. Obayya, Dispersion characteristics of asymmetric channel plasmon polariton waveguides. IEEE J. Quant. Electron. 50(6), 474–482 (2014)CrossRef F.F.K. Hussain, A.M. Heikal, M.F.O. Hameed, J. El-Azab, W.S. Abdelaziz, S.S.A. Obayya, Dispersion characteristics of asymmetric channel plasmon polariton waveguides. IEEE J. Quant. Electron. 50(6), 474–482 (2014)CrossRef
10.
Zurück zum Zitat A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Coupling characteristic of a novel hybrid long-range plasmonic waveguide including bends. IEEE J. Quant. Electron. 49(8), 621–627 (2013)CrossRef A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Coupling characteristic of a novel hybrid long-range plasmonic waveguide including bends. IEEE J. Quant. Electron. 49(8), 621–627 (2013)CrossRef
11.
Zurück zum Zitat A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Improved trenched channel plasmonic waveguide. J. Lightwave Technol. 31(13), 2184–2191 (2013)CrossRef A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Improved trenched channel plasmonic waveguide. J. Lightwave Technol. 31(13), 2184–2191 (2013)CrossRef
12.
Zurück zum Zitat S. Maier, Plasmonics: metal nanostructures for subwavelength photonic devices. IEEE J. Sel. Top. Quant. Electron. 12(6), 1214–1220 (2006)CrossRef S. Maier, Plasmonics: metal nanostructures for subwavelength photonic devices. IEEE J. Sel. Top. Quant. Electron. 12(6), 1214–1220 (2006)CrossRef
13.
Zurück zum Zitat R. Zia, M. Selker, P. Catrysse, M. Brongersma, Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21(12), 2442 (2004)CrossRef R. Zia, M. Selker, P. Catrysse, M. Brongersma, Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21(12), 2442 (2004)CrossRef
14.
Zurück zum Zitat J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22(7), 475 (1997)CrossRef J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22(7), 475 (1997)CrossRef
15.
Zurück zum Zitat T. Koo, S. Chan, A. Berlin, Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering. Opt. Lett. 30(9), 1024 (2005)CrossRef T. Koo, S. Chan, A. Berlin, Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering. Opt. Lett. 30(9), 1024 (2005)CrossRef
16.
Zurück zum Zitat B. Rothenhäusler, W. Knoll, Surface–plasmon microscopy. Nature 332(6165), 615–617 (1988)CrossRef B. Rothenhäusler, W. Knoll, Surface–plasmon microscopy. Nature 332(6165), 615–617 (1988)CrossRef
17.
Zurück zum Zitat M. Quinten, A. Leitner, J. Krenn, F. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23(17), 1331 (1998)CrossRef M. Quinten, A. Leitner, J. Krenn, F. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23(17), 1331 (1998)CrossRef
18.
Zurück zum Zitat Z. Liu, Y. Wang, J. Yao, H. Lee, W. Srituravanich, X. Zhang, Broad band two-dimensional manipulation of surface plasmons. Nano Lett. 9(1), 462–466 (2009)CrossRef Z. Liu, Y. Wang, J. Yao, H. Lee, W. Srituravanich, X. Zhang, Broad band two-dimensional manipulation of surface plasmons. Nano Lett. 9(1), 462–466 (2009)CrossRef
19.
Zurück zum Zitat S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, H. Atwater, Plasmonics-A route to nanoscale optical devices. Adv. Mater. 13(19), 1501–1505 (2001)CrossRef S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, H. Atwater, Plasmonics-A route to nanoscale optical devices. Adv. Mater. 13(19), 1501–1505 (2001)CrossRef
20.
Zurück zum Zitat M.H. Muhammad, M.F.O. Hameed, S.S.A. Obayya, Broadband absorption enhancement in periodic structure plasmonic solar cell. Opt. Quant. Electron. 47(6), 1487–1494 (2015)CrossRef M.H. Muhammad, M.F.O. Hameed, S.S.A. Obayya, Broadband absorption enhancement in periodic structure plasmonic solar cell. Opt. Quant. Electron. 47(6), 1487–1494 (2015)CrossRef
21.
Zurück zum Zitat J. Burke, G. Stegeman, T. Tamir, Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33(8), 5186–5201 (1986)CrossRef J. Burke, G. Stegeman, T. Tamir, Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33(8), 5186–5201 (1986)CrossRef
22.
Zurück zum Zitat S. Al-Bader, M. Imtaar, Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells. IEEE J. Quant. Electron. 28(2), 525–533 (1992)CrossRef S. Al-Bader, M. Imtaar, Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells. IEEE J. Quant. Electron. 28(2), 525–533 (1992)CrossRef
23.
Zurück zum Zitat S. Al-Bader, M. Imtaar, Optical fiber hybrid-surface plasmon polaritons. J. Opt. Soc. Am. B 10(1), 83 (1993)CrossRef S. Al-Bader, M. Imtaar, Optical fiber hybrid-surface plasmon polaritons. J. Opt. Soc. Am. B 10(1), 83 (1993)CrossRef
24.
Zurück zum Zitat P. Berini, Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics. Opt. Express 7(10), 329 (2000)CrossRef P. Berini, Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics. Opt. Express 7(10), 329 (2000)CrossRef
25.
Zurück zum Zitat P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures. Phys. Rev. B, 63(12) (2001) P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures. Phys. Rev. B, 63(12) (2001)
26.
Zurück zum Zitat R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek, Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width. Opt. Lett. 25(11), 844 (2000)CrossRef R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek, Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width. Opt. Lett. 25(11), 844 (2000)CrossRef
27.
Zurück zum Zitat A. Degiron, C. Dellagiacoma, J. McIlhargey, G. Shvets, O. Martin, D. Smith, Simulations of hybrid long-range plasmon modes with application to 90° bends. Opt. Lett. 32(16), 2354 (2007)CrossRef A. Degiron, C. Dellagiacoma, J. McIlhargey, G. Shvets, O. Martin, D. Smith, Simulations of hybrid long-range plasmon modes with application to 90° bends. Opt. Lett. 32(16), 2354 (2007)CrossRef
28.
Zurück zum Zitat T. Holmgaard, J. Gosciniak, S. Bozhevolnyi, Long-range dielectric-loaded surface plasmon-polariton waveguides. Opt. Express 18(22), 23009 (2010)CrossRef T. Holmgaard, J. Gosciniak, S. Bozhevolnyi, Long-range dielectric-loaded surface plasmon-polariton waveguides. Opt. Express 18(22), 23009 (2010)CrossRef
29.
Zurück zum Zitat J. Guo, R. Adato, Control of 2D plasmon-polariton mode with dielectric nanolayers. Opt. Express 16(2), 1232 (2008)CrossRef J. Guo, R. Adato, Control of 2D plasmon-polariton mode with dielectric nanolayers. Opt. Express 16(2), 1232 (2008)CrossRef
Metadaten
Titel
Basic Principles of Surface Plasmon Resonance
verfasst von
A. M. Heikal
Mohamed Farhat O. Hameed
S. S. A. Obayya
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-76556-3_3