Skip to main content

2022 | OriginalPaper | Buchkapitel

Bayesian Learning of Effective Chemical Master Equations in Crowded Intracellular Conditions

verfasst von : Svitlana Braichenko, Ramon Grima, Guido Sanguinetti

Erschienen in: Computational Methods in Systems Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biochemical reactions inside living cells often occur in the presence of crowders - molecules that do not participate in the reactions but influence the reaction rates through excluded volume effects. However the standard approach to modelling stochastic intracellular reaction kinetics is based on the chemical master equation (CME) whose propensities are derived assuming no crowding effects. Here, we propose a machine learning strategy based on Bayesian Optimisation utilising synthetic data obtained from spatial cellular automata (CA) simulations (that explicitly model volume-exclusion effects) to learn effective propensity functions for CMEs. The predictions from a small CA training data set can then be extended to the whole range of parameter space describing physiologically relevant levels of crowding by means of Gaussian Process regression. We demonstrate the method on an enzyme-catalyzed reaction and a genetic feedback loop, showing good agreement between the time-dependent distributions of molecule numbers predicted by the effective CME and CA simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002)CrossRef Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002)CrossRef
2.
Zurück zum Zitat Darzacq, X., et al.: Imaging transcription in living cells. Annu. Rev. Biophys. 38, 173–196 (2009)CrossRef Darzacq, X., et al.: Imaging transcription in living cells. Annu. Rev. Biophys. 38, 173–196 (2009)CrossRef
3.
Zurück zum Zitat Shah, S., et al.: Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174(2), 363–376 (2018)CrossRef Shah, S., et al.: Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174(2), 363–376 (2018)CrossRef
4.
Zurück zum Zitat Larsson, A.J., et al.: Genomic encoding of transcriptional burst kinetics. Nature 565(7738), 251–254 (2019)CrossRef Larsson, A.J., et al.: Genomic encoding of transcriptional burst kinetics. Nature 565(7738), 251–254 (2019)CrossRef
5.
Zurück zum Zitat Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRef Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRef
6.
Zurück zum Zitat Voliotis, M., Thomas, P., Grima, R., Bowsher, C.G.: Stochastic simulation of biomolecular networks in dynamic environments. PLoS Comput. Biol. 12(6), e1004923 (2016) Voliotis, M., Thomas, P., Grima, R., Bowsher, C.G.: Stochastic simulation of biomolecular networks in dynamic environments. PLoS Comput. Biol. 12(6), e1004923 (2016)
7.
Zurück zum Zitat Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)CrossRef Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)CrossRef
8.
Zurück zum Zitat Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for stochastic biochemical kinetics—a tutorial review. J. Phys. A: Math. Theor. 50(9), 093001 (2017) Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for stochastic biochemical kinetics—a tutorial review. J. Phys. A: Math. Theor. 50(9), 093001 (2017)
9.
Zurück zum Zitat Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., Naef, F.: Mammalian genes are transcribed with widely different bursting kinetics. Science 332(6028), 472–474 (2011)CrossRef Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., Naef, F.: Mammalian genes are transcribed with widely different bursting kinetics. Science 332(6028), 472–474 (2011)CrossRef
10.
Zurück zum Zitat Skinner, S.O., Xu, H., Nagarkar-Jaiswal, S., Freire, P.R., Zwaka, T.P., Golding, I.: Single-cell analysis of transcription kinetics across the cell cycle. Elife 5, e12175 (2016) Skinner, S.O., Xu, H., Nagarkar-Jaiswal, S., Freire, P.R., Zwaka, T.P., Golding, I.: Single-cell analysis of transcription kinetics across the cell cycle. Elife 5, e12175 (2016)
11.
Zurück zum Zitat Van Kampen, N.: Stochastic Processes in Physics and Chemistry, 3rd edn. North-Holland Personal Library. Elsevier, Amsterdam (2007) Van Kampen, N.: Stochastic Processes in Physics and Chemistry, 3rd edn. North-Holland Personal Library. Elsevier, Amsterdam (2007)
12.
Zurück zum Zitat Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188(1–3), 404–425 (1992)CrossRef Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188(1–3), 404–425 (1992)CrossRef
13.
Zurück zum Zitat Gillespie, D.T.: A diffusional bimolecular propensity function. J. Chem. Phys. 131(16), 164109 (2009) Gillespie, D.T.: A diffusional bimolecular propensity function. J. Chem. Phys. 131(16), 164109 (2009)
14.
Zurück zum Zitat Van den Berg, B., Wain, R., Dobson, C.M., Ellis, R.J.: Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell. EMBO J. 19(15), 3870–3875 (2000)CrossRef Van den Berg, B., Wain, R., Dobson, C.M., Ellis, R.J.: Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell. EMBO J. 19(15), 3870–3875 (2000)CrossRef
15.
Zurück zum Zitat Zhou, H.X., Rivas, G., Minton, A.P.: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008)CrossRef Zhou, H.X., Rivas, G., Minton, A.P.: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008)CrossRef
16.
Zurück zum Zitat Tan, C., Saurabh, S., Bruchez, M.P., Schwartz, R., LeDuc, P.: Molecular crowding shapes gene expression in synthetic cellular nanosystems. Nat. Nanotechnol. 8(8), 602–608 (2013)CrossRef Tan, C., Saurabh, S., Bruchez, M.P., Schwartz, R., LeDuc, P.: Molecular crowding shapes gene expression in synthetic cellular nanosystems. Nat. Nanotechnol. 8(8), 602–608 (2013)CrossRef
17.
Zurück zum Zitat Mourão, M.A., Hakim, J.B., Schnell, S.: Connecting the dots: the effects of macromolecular crowding on cell physiology. Biophys. J . 107(12), 2761–2766 (2014)CrossRef Mourão, M.A., Hakim, J.B., Schnell, S.: Connecting the dots: the effects of macromolecular crowding on cell physiology. Biophys. J . 107(12), 2761–2766 (2014)CrossRef
18.
Zurück zum Zitat Grima, R.: Intrinsic biochemical noise in crowded intracellular conditions. J. Chem. Phys. 132(18), 05B604 (2010) Grima, R.: Intrinsic biochemical noise in crowded intracellular conditions. J. Chem. Phys. 132(18), 05B604 (2010)
19.
Zurück zum Zitat Cianci, C., Smith, S., Grima, R.: Molecular finite-size effects in stochastic models of equilibrium chemical systems. J. Chem. Phys. 144(8), 084101 (2016) Cianci, C., Smith, S., Grima, R.: Molecular finite-size effects in stochastic models of equilibrium chemical systems. J. Chem. Phys. 144(8), 084101 (2016)
20.
Zurück zum Zitat Gillespie, D.T., Lampoudi, S., Petzold, L.R.: Effect of reactant size on discrete stochastic chemical kinetics. J. Chem. Phys. 126(3), 034302 (2007) Gillespie, D.T., Lampoudi, S., Petzold, L.R.: Effect of reactant size on discrete stochastic chemical kinetics. J. Chem. Phys. 126(3), 034302 (2007)
21.
Zurück zum Zitat Berry, H.: Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys. J . 83(4), 1891–1901 (2002)CrossRef Berry, H.: Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys. J . 83(4), 1891–1901 (2002)CrossRef
22.
Zurück zum Zitat Schnell, S., Turner, T.E.: Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Prog. Biophys. Mol. Biol. 85(2), 235–260 (2004)CrossRef Schnell, S., Turner, T.E.: Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Prog. Biophys. Mol. Biol. 85(2), 235–260 (2004)CrossRef
23.
Zurück zum Zitat Grima, R., Schnell, S.: A systematic investigation of the rate laws valid in intracellular environments. Biophys. Chem. 124(1), 1–10 (2006)CrossRef Grima, R., Schnell, S.: A systematic investigation of the rate laws valid in intracellular environments. Biophys. Chem. 124(1), 1–10 (2006)CrossRef
24.
Zurück zum Zitat Smith, S., Grima, R.: Fast simulation of Brownian dynamics in a crowded environment. J. Chem. Phys. 146(2), 024105 (2017) Smith, S., Grima, R.: Fast simulation of Brownian dynamics in a crowded environment. J. Chem. Phys. 146(2), 024105 (2017)
25.
Zurück zum Zitat Kim, J.S., Yethiraj, A.: Crowding effects on association reactions at membranes. Biophys. J . 98(6), 951–958 (2010)CrossRef Kim, J.S., Yethiraj, A.: Crowding effects on association reactions at membranes. Biophys. J . 98(6), 951–958 (2010)CrossRef
26.
Zurück zum Zitat Chew, W.X., Kaizu, K., Watabe, M., Muniandy, S.V., Takahashi, K., Arjunan, S.N.: Reaction-diffusion kinetics on lattice at the microscopic scale. Phys. Rev. E 98(3), 032418 (2018)CrossRef Chew, W.X., Kaizu, K., Watabe, M., Muniandy, S.V., Takahashi, K., Arjunan, S.N.: Reaction-diffusion kinetics on lattice at the microscopic scale. Phys. Rev. E 98(3), 032418 (2018)CrossRef
27.
Zurück zum Zitat Andrews, S.S.: Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction and a library interface. Bioinformatics 33(5), 710–717 (2017)CrossRef Andrews, S.S.: Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction and a library interface. Bioinformatics 33(5), 710–717 (2017)CrossRef
28.
Zurück zum Zitat Deutsch, A., Dormann, S.: Mathematical Modeling of Biological Pattern Formation. Springer, Heidelberg (2005) Deutsch, A., Dormann, S.: Mathematical Modeling of Biological Pattern Formation. Springer, Heidelberg (2005)
29.
Zurück zum Zitat Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer, Heidelberg (2004) Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer, Heidelberg (2004)
30.
Zurück zum Zitat Wieczorek, G., Zielenkiewicz, P.: Influence of macromolecular crowding on protein-protein association rates—a Brownian dynamics study. Biophys. J . 95(11), 5030–5036 (2008)CrossRef Wieczorek, G., Zielenkiewicz, P.: Influence of macromolecular crowding on protein-protein association rates—a Brownian dynamics study. Biophys. J . 95(11), 5030–5036 (2008)CrossRef
31.
Zurück zum Zitat Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences. Springer Series in Synergetics, 4th edn. Springer, Heidelberg (2009) Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences. Springer Series in Synergetics, 4th edn. Springer, Heidelberg (2009)
32.
Zurück zum Zitat Baras, F., Mansour, M.M.: Reaction-diffusion master equation: a comparison with microscopic simulations. Phys. Rev. E 54(6), 6139 (1996)CrossRef Baras, F., Mansour, M.M.: Reaction-diffusion master equation: a comparison with microscopic simulations. Phys. Rev. E 54(6), 6139 (1996)CrossRef
33.
Zurück zum Zitat Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)CrossRef Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)CrossRef
34.
Zurück zum Zitat Loskot, P., Atitey, K., Mihaylova, L.: Comprehensive review of models and methods for inferences in bio-chemical reaction networks. Front. Genet. 10, 549 (2019)CrossRef Loskot, P., Atitey, K., Mihaylova, L.: Comprehensive review of models and methods for inferences in bio-chemical reaction networks. Front. Genet. 10, 549 (2019)CrossRef
35.
Zurück zum Zitat Öcal, K., Grima, R., Sanguinetti, G.: Parameter estimation for biochemical reaction networks using Wasserstein distances. J. Phys. A: Math. Theor. 53(3), 034002 (2019) Öcal, K., Grima, R., Sanguinetti, G.: Parameter estimation for biochemical reaction networks using Wasserstein distances. J. Phys. A: Math. Theor. 53(3), 034002 (2019)
36.
Zurück zum Zitat Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)CrossRef Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)CrossRef
37.
Zurück zum Zitat Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599 [cs] (2010) Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:​1012.​2599 [cs] (2010)
38.
Zurück zum Zitat Villani, C.: Optimal Transport: Old and New. Grundlehren Der Mathematischen Wissenschaften. Springer, Heidelberg (2009) Villani, C.: Optimal Transport: Old and New. Grundlehren Der Mathematischen Wissenschaften. Springer, Heidelberg (2009)
39.
Zurück zum Zitat Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006) Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006)
40.
Zurück zum Zitat Vazquez, E., Bect, J.: Convergence properties of the expected improvement algorithm with fixed mean and covariance functions. J. Stat. Plann. Inference 140(11), 3088–3095 (2010)CrossRef Vazquez, E., Bect, J.: Convergence properties of the expected improvement algorithm with fixed mean and covariance functions. J. Stat. Plann. Inference 140(11), 3088–3095 (2010)CrossRef
41.
Zurück zum Zitat Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press (2017) Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press (2017)
42.
Zurück zum Zitat Thomas, P., Straube, A.V., Grima, R.: The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions. BMC Syst. Biol. 6(1), 39 (2012)CrossRef Thomas, P., Straube, A.V., Grima, R.: The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions. BMC Syst. Biol. 6(1), 39 (2012)CrossRef
43.
Zurück zum Zitat Cranmer, K., Brehmer, J., Louppe, G.: The frontier of simulation-based inference. Proc. Natl. Acad. Sci. 117(48), 30055–30062 (2020)CrossRef Cranmer, K., Brehmer, J., Louppe, G.: The frontier of simulation-based inference. Proc. Natl. Acad. Sci. 117(48), 30055–30062 (2020)CrossRef
Metadaten
Titel
Bayesian Learning of Effective Chemical Master Equations in Crowded Intracellular Conditions
verfasst von
Svitlana Braichenko
Ramon Grima
Guido Sanguinetti
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-15034-0_12

Premium Partner