Skip to main content

2018 | OriginalPaper | Buchkapitel

19. Bayesian Spatiotemporal Modeling for Detecting Neuronal Activation via Functional Magnetic Resonance Imaging

verfasst von : Martin Bezener, Lynn E. Eberly, John Hughes, Galin Jones, Donald R. Musgrove

Erschienen in: Handbook of Big Data Analytics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider recent developments in Bayesian spatiotemporal models for detecting neuronal activation in fMRI experiment. A Bayesian approach typically results in complicated posterior distributions that can be of enormous dimension for a whole-brain analysis, thus posing a formidable computational challenge. Recently developed Bayesian approaches to detecting local activation have proved computationally efficient while requiring few modeling compromises. We review two such methods and implement them on a data set from the Human Connectome Project in order to show that, contrary to popular opinion, careful implementation of Markov chain Monte Carlo methods can be used to obtain reliable results in a matter of minutes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aguirre GK, Zarahn E, D’Esposito M (1997) Empirical analyses of BOLD fMRI statistics. II. Spatially smoothed data collected under null-hypothesis and experimental conditions. NeuroImage 5:199–212CrossRef Aguirre GK, Zarahn E, D’Esposito M (1997) Empirical analyses of BOLD fMRI statistics. II. Spatially smoothed data collected under null-hypothesis and experimental conditions. NeuroImage 5:199–212CrossRef
Zurück zum Zitat Aguirre, GK, Zarahan E, D’Esposito M (1998) The variability of human, BOLD hemodynamic responses. NeuroImage 8:360–369CrossRef Aguirre, GK, Zarahan E, D’Esposito M (1998) The variability of human, BOLD hemodynamic responses. NeuroImage 8:360–369CrossRef
Zurück zum Zitat Banerjee S, Carlin BP, Gelfand AE (2003) Hierarchical modeling and analysis for spatial data, 1st edn. Chapman and Hall/CRC, New YorkCrossRef Banerjee S, Carlin BP, Gelfand AE (2003) Hierarchical modeling and analysis for spatial data, 1st edn. Chapman and Hall/CRC, New YorkCrossRef
Zurück zum Zitat Bezener M, Hughes J, Jones GL (2015) Bayesian spatiotemporal modeling using hierarchical spatial priors with applications to functional magnetic resonance imaging. Preprint Bezener M, Hughes J, Jones GL (2015) Bayesian spatiotemporal modeling using hierarchical spatial priors with applications to functional magnetic resonance imaging. Preprint
Zurück zum Zitat Cressie NA (1993) Statistics for spatial data, revised edn. Wiley Interscience, New YorkCrossRef Cressie NA (1993) Statistics for spatial data, revised edn. Wiley Interscience, New YorkCrossRef
Zurück zum Zitat Essen DCV, Smith SM, Barch DM, Behrens TE, Yavoub E, Ugurbil K (2013) The WU-Minn Human Connectome Project: an overview. Neuroimage 80:62–79CrossRef Essen DCV, Smith SM, Barch DM, Behrens TE, Yavoub E, Ugurbil K (2013) The WU-Minn Human Connectome Project: an overview. Neuroimage 80:62–79CrossRef
Zurück zum Zitat Friston KJ, Worsley K, Frackowiak R, Mazziotta J, Evans A (1994) Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:210–220CrossRef Friston KJ, Worsley K, Frackowiak R, Mazziotta J, Evans A (1994) Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:210–220CrossRef
Zurück zum Zitat Friston KJ, Holmes A, Worsley KJ, Polin JB, Frith C, Frackowik R (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef Friston KJ, Holmes A, Worsley KJ, Polin JB, Frith C, Frackowik R (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef
Zurück zum Zitat Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD (2007) Statistical parametric mapping: the analysis of functional brain images. Academic, London Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD (2007) Statistical parametric mapping: the analysis of functional brain images. Academic, London
Zurück zum Zitat Genovese CR (2000) A Bayesian time-course model for functional magnetic resonance imaging data. J Am Stat Assoc 95(451):691–703CrossRef Genovese CR (2000) A Bayesian time-course model for functional magnetic resonance imaging data. J Am Stat Assoc 95(451):691–703CrossRef
Zurück zum Zitat George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88(423):881–889CrossRef George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88(423):881–889CrossRef
Zurück zum Zitat George EI, McCulloch RE (1997) Approaches for Bayesian variable selection. Stat Sin 7:339–373 George EI, McCulloch RE (1997) Approaches for Bayesian variable selection. Stat Sin 7:339–373
Zurück zum Zitat Haran M (2011) Gaussian random field models for spatial data. In: Brooks SP, Gelman AE, Jones GL, Meng XL (eds) Handbook of Markov chain Monte Carlo. Chapman and Hall/CRC, London, pp 449–478 Haran M (2011) Gaussian random field models for spatial data. In: Brooks SP, Gelman AE, Jones GL, Meng XL (eds) Handbook of Markov chain Monte Carlo. Chapman and Hall/CRC, London, pp 449–478
Zurück zum Zitat Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, Egan MF, Weinberger DR (2002) Serotonin transporter genetic variation and the response of human amygdala. Science 297:400–403CrossRef Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, Egan MF, Weinberger DR (2002) Serotonin transporter genetic variation and the response of human amygdala. Science 297:400–403CrossRef
Zurück zum Zitat Hensen R, Friston K (2007) Convolution models for fMRI. In: Statistical parametric mapping: the analysis of functional brain images. Academic, Cambridge Hensen R, Friston K (2007) Convolution models for fMRI. In: Statistical parametric mapping: the analysis of functional brain images. Academic, Cambridge
Zurück zum Zitat Holmes CC, Held L (2006) Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Anal 1(1):145–168MathSciNetCrossRef Holmes CC, Held L (2006) Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Anal 1(1):145–168MathSciNetCrossRef
Zurück zum Zitat Holmes AP, Blair RC, Watson JD, Ford I (1996) Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22CrossRef Holmes AP, Blair RC, Watson JD, Ford I (1996) Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22CrossRef
Zurück zum Zitat Huettel SA, Somng AW, McCarthy G (2009) Functional magnetic resonance imaging. Sinauer Associates, Sunderland Huettel SA, Somng AW, McCarthy G (2009) Functional magnetic resonance imaging. Sinauer Associates, Sunderland
Zurück zum Zitat Hughes J, Haran M (2013) Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J R Stat Soc Ser B Stat Methodol 75(1):139–159MathSciNetCrossRef Hughes J, Haran M (2013) Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J R Stat Soc Ser B Stat Methodol 75(1):139–159MathSciNetCrossRef
Zurück zum Zitat Kaushik K, Karesh K, Suresha D (2013) Segmentation of the white matter from the brain fMRI images. Int J Adv Res Comput Eng Technol 2:1314–1317 Kaushik K, Karesh K, Suresha D (2013) Segmentation of the white matter from the brain fMRI images. Int J Adv Res Comput Eng Technol 2:1314–1317
Zurück zum Zitat Kelsall J, Wakefield J (1999) Discussion of “Bayesian Models for spatially correlated disease and exposure data”, by Best et al. In: Berger J, Bernardo J, Dawid A, Smith A (eds) Bayesian statistics, vol 6. Oxford University Press, Oxford Kelsall J, Wakefield J (1999) Discussion of “Bayesian Models for spatially correlated disease and exposure data”, by Best et al. In: Berger J, Bernardo J, Dawid A, Smith A (eds) Bayesian statistics, vol 6. Oxford University Press, Oxford
Zurück zum Zitat Lazar NA (2008) The statistical analysis of fMRI data. Springer, New York Lazar NA (2008) The statistical analysis of fMRI data. Springer, New York
Zurück zum Zitat Lee K-J (2010) Computational issues in using Bayesian hierarchical methods for the spatial modeling of fMRI data. PhD thesis, University of Minnesota, School of Statistics Lee K-J (2010) Computational issues in using Bayesian hierarchical methods for the spatial modeling of fMRI data. PhD thesis, University of Minnesota, School of Statistics
Zurück zum Zitat Lee K-J, Jones GL, Caffo BS, Bassett SS (2014) Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data. Bayesian Anal 9:699–732MathSciNetCrossRef Lee K-J, Jones GL, Caffo BS, Bassett SS (2014) Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data. Bayesian Anal 9:699–732MathSciNetCrossRef
Zurück zum Zitat Locascio J, Jennings PJ, Moore CI, Corkin S (1997) Time series analysis in the time domain and resampling methods for studies of functional magnetic brain imaging. Hum Brain Mapp 5: 168–193 Locascio J, Jennings PJ, Moore CI, Corkin S (1997) Time series analysis in the time domain and resampling methods for studies of functional magnetic brain imaging. Hum Brain Mapp 5: 168–193
Zurück zum Zitat Makni S, Idier J, Vincent T, Thirion B, Dehaene-Lambertz G, Ciuciu P (2008) A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI. NeuroImage 41:941–969CrossRef Makni S, Idier J, Vincent T, Thirion B, Dehaene-Lambertz G, Ciuciu P (2008) A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI. NeuroImage 41:941–969CrossRef
Zurück zum Zitat Mikl M, Marec̆ek R, Hlus̆tík P, Pavlicová M, Drastich A, Chlebus P, Brázdil M, Krupa P (2008) Effects of spatial smoothing on fMRI group inferences. Magn Reson Imaging 26:490–503CrossRef Mikl M, Marec̆ek R, Hlus̆tík P, Pavlicová M, Drastich A, Chlebus P, Brázdil M, Krupa P (2008) Effects of spatial smoothing on fMRI group inferences. Magn Reson Imaging 26:490–503CrossRef
Zurück zum Zitat Monti MM (2011) Statistical analysis of fMRI time-series: a critical review of the GLM approach. Front Hum Neurosci 5:28 Monti MM (2011) Statistical analysis of fMRI time-series: a critical review of the GLM approach. Front Hum Neurosci 5:28
Zurück zum Zitat Musgrove DR, Hughes J, Eberly LE (2015) Fast, fully Bayesian spatiotemporal inference of fMRI data. Preprint Musgrove DR, Hughes J, Eberly LE (2015) Fast, fully Bayesian spatiotemporal inference of fMRI data. Preprint
Zurück zum Zitat Penny W, Kiebel S, Friston K (2003) Variational Bayesian inference for fMRI time series. NeuroImage 19:727–741CrossRef Penny W, Kiebel S, Friston K (2003) Variational Bayesian inference for fMRI time series. NeuroImage 19:727–741CrossRef
Zurück zum Zitat Smith M, Fahrmeir L (2007) Spatial Bayesian variable selection with application to functional magnetic resonance imaging. J Am Stat Assoc 102(478):417–431MathSciNetCrossRef Smith M, Fahrmeir L (2007) Spatial Bayesian variable selection with application to functional magnetic resonance imaging. J Am Stat Assoc 102(478):417–431MathSciNetCrossRef
Zurück zum Zitat Smith M, Pütz B, Auer D, Fahrmeir L (2003) Assessing brain activity through spatial Bayesian variable selection. NeuroImage 20:802–815CrossRef Smith M, Pütz B, Auer D, Fahrmeir L (2003) Assessing brain activity through spatial Bayesian variable selection. NeuroImage 20:802–815CrossRef
Zurück zum Zitat Triantafyllou C, Hoge R, Wald L (2006) Effect of spatial smoothing on physiological noise in high-resolution fMRI. NeuroImage 32:551–557CrossRef Triantafyllou C, Hoge R, Wald L (2006) Effect of spatial smoothing on physiological noise in high-resolution fMRI. NeuroImage 32:551–557CrossRef
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289CrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289CrossRef
Zurück zum Zitat Woolrich MW, Jenkinson M, Brady JM, Smith SM (2004) Fully Bayesian spatio-temporal modeling of fMRI data. IEEE Trans Med Imaging 23:213–231CrossRef Woolrich MW, Jenkinson M, Brady JM, Smith SM (2004) Fully Bayesian spatio-temporal modeling of fMRI data. IEEE Trans Med Imaging 23:213–231CrossRef
Zurück zum Zitat Worsley K, Marrett S, Neelin P, Evans A (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12:900–918CrossRef Worsley K, Marrett S, Neelin P, Evans A (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12:900–918CrossRef
Zurück zum Zitat Xia J, Liang F, Wang YM (2009) fMRI analysis through Bayesian variable selection with a spatial prior. In: IEEE international symposium on biomedical imaging (ISBI), pp 714–717 Xia J, Liang F, Wang YM (2009) fMRI analysis through Bayesian variable selection with a spatial prior. In: IEEE international symposium on biomedical imaging (ISBI), pp 714–717
Zurück zum Zitat Zellner A (1996) On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In: Bayesian inference and decision techniques: essays in honor of Brunode Finetti. North-Holland/Elsevier, Amsterdam, pp 233–243 Zellner A (1996) On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In: Bayesian inference and decision techniques: essays in honor of Brunode Finetti. North-Holland/Elsevier, Amsterdam, pp 233–243
Zurück zum Zitat Zhang L, Guindani M, Vannucci M (2015) Bayesian models for functional magnetic resonance imaging data analysis. WIREs Comput Stat 7:21–41MathSciNetCrossRef Zhang L, Guindani M, Vannucci M (2015) Bayesian models for functional magnetic resonance imaging data analysis. WIREs Comput Stat 7:21–41MathSciNetCrossRef
Metadaten
Titel
Bayesian Spatiotemporal Modeling for Detecting Neuronal Activation via Functional Magnetic Resonance Imaging
verfasst von
Martin Bezener
Lynn E. Eberly
John Hughes
Galin Jones
Donald R. Musgrove
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-18284-1_19

Premium Partner