Skip to main content
Erschienen in: Journal of Scientific Computing 3/2023

01.12.2023

Bernstein–Bézier \(H({\text {curl}})\)-Conforming Finite Elements for Time-Harmonic Electromagnetic Scattering Problems

verfasst von: Nawfel Benatia, Abdellah El Kacimi, Omar Laghrouche, Ahmed Ratnani

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with a high-order \(H({\text {curl}})\)-conforming Bernstein–Bézier finite element method (BBFEM) to accurately solve time-harmonic Maxwell short wave problems on unstructured triangular mesh grids. We suggest enhanced basis functions, defined on the reference triangle and tetrahedron, aiming to reduce the condition number of the resulting global matrix. Moreover, element-level static condensation of the interior degrees of freedom is performed in order to reduce memory requirements. The performance of BBFEM is assessed using several benchmark tests. A preliminary analysis is first conducted to highlight the advantage of the suggested basis functions in improving the conditioning. Numerical results dealing with the electromagnetic scattering from a perfect electric conductor demonstrate the effectiveness of BBFEM in mitigating the pollution effect and its efficiency in capturing high-order evanescent wave modes. Electromagnetic wave scattering by a circular dielectric, with high wave speed contrast, is also investigated. The interior curved interface between layers is accurately described based on a linear blending map to avoid numerical errors due to geometry description. The achieved results support our expectations for highly accurate and efficient BBFEM for time harmonic wave problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nédélec, J.C.: Mixed finite elements in \({\mathbb{R} }^{3}\). Numer. Math. 35(3), 315–341 (1980)MathSciNetMATH Nédélec, J.C.: Mixed finite elements in \({\mathbb{R} }^{3}\). Numer. Math. 35(3), 315–341 (1980)MathSciNetMATH
2.
Zurück zum Zitat Nédélec, J.C.: A new family of mixed finite elements in \({\mathbb{R} }^{3}\). Numer. Math. 50(1), 57–81 (1986)MathSciNetMATH Nédélec, J.C.: A new family of mixed finite elements in \({\mathbb{R} }^{3}\). Numer. Math. 50(1), 57–81 (1986)MathSciNetMATH
3.
Zurück zum Zitat Barton, M.L., Cendes, Z.J.: New vector finite elements for three-dimensional magnetic field computation. J. Appl. Phys. 61(8), 3919–3921 (1987) Barton, M.L., Cendes, Z.J.: New vector finite elements for three-dimensional magnetic field computation. J. Appl. Phys. 61(8), 3919–3921 (1987)
4.
Zurück zum Zitat Bespalov, A.N.: Finite element method for the eigenmode problem of a RF cavity resonator (1988) Bespalov, A.N.: Finite element method for the eigenmode problem of a RF cavity resonator (1988)
5.
Zurück zum Zitat Lee, J.F., Sun, D.K., Cendes, Z.J.: Tangential vector finite elements for electromagnetic field computation. IEEE Trans. Magn. 27(5), 4032–4035 (1991) Lee, J.F., Sun, D.K., Cendes, Z.J.: Tangential vector finite elements for electromagnetic field computation. IEEE Trans. Magn. 27(5), 4032–4035 (1991)
6.
Zurück zum Zitat Ahagon, A., Fujiwara, K., Nakata, T.: Comparison of various kinds of edge elements for electromagnetic field analysis. IEEE Trans. Magn. 32(3), 898–901 (1996) Ahagon, A., Fujiwara, K., Nakata, T.: Comparison of various kinds of edge elements for electromagnetic field analysis. IEEE Trans. Magn. 32(3), 898–901 (1996)
7.
Zurück zum Zitat Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)MATH Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)MATH
8.
Zurück zum Zitat Bossavit, A., Verite, J.C.: A mixed FEM-BIEM method to solve 3-D eddy-current problems. IEEE Trans. Magn. 18(2), 431–435 (1982) Bossavit, A., Verite, J.C.: A mixed FEM-BIEM method to solve 3-D eddy-current problems. IEEE Trans. Magn. 18(2), 431–435 (1982)
9.
Zurück zum Zitat Bossavit, A., Verite, J.C.: The TRIFOU code: Solving the 3-D eddy-currents problem by using H as state variable. IEEE Trans. Magn. 19(6), 2465–2470 (1983) Bossavit, A., Verite, J.C.: The TRIFOU code: Solving the 3-D eddy-currents problem by using H as state variable. IEEE Trans. Magn. 19(6), 2465–2470 (1983)
10.
Zurück zum Zitat Bossavit, A.: Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc. A Phys. Sci. Meas. Instrum. Manag. Educ. Rev. 135(8), 493–500 (1988) Bossavit, A.: Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc. A Phys. Sci. Meas. Instrum. Manag. Educ. Rev. 135(8), 493–500 (1988)
11.
Zurück zum Zitat Bossavit, A.: A rationale for edge-elements in 3-D fields computations. IEEE Trans. Magn. 24(1), 74–79 (1988) Bossavit, A.: A rationale for edge-elements in 3-D fields computations. IEEE Trans. Magn. 24(1), 74–79 (1988)
12.
Zurück zum Zitat Bossavit, A., Mayergoyz, I.: Edge elements for scattering problems. IEEE Trans. Magn. 25(4), 2816–2821 (1989) Bossavit, A., Mayergoyz, I.: Edge elements for scattering problems. IEEE Trans. Magn. 25(4), 2816–2821 (1989)
13.
Zurück zum Zitat Mur, G., De Hoop, A.: A finite element method for computing three-dimensional electromagnetic fields in inhomogeneous media. IEEE Trans. Magn. 21(6), 2188–2191 (1985) Mur, G., De Hoop, A.: A finite element method for computing three-dimensional electromagnetic fields in inhomogeneous media. IEEE Trans. Magn. 21(6), 2188–2191 (1985)
14.
Zurück zum Zitat Cendes, Z.J.: Vector finite elements for electromagnetic field computation. IEEE Trans. Magn. 27(5), 3958–3966 (1991) Cendes, Z.J.: Vector finite elements for electromagnetic field computation. IEEE Trans. Magn. 27(5), 3958–3966 (1991)
15.
Zurück zum Zitat Webb, J.P., Forgahani, B.: Hierarchal scalar and vector tetrahedra. IEEE Trans. Magn. 29(2), 1495–1498 (1993) Webb, J.P., Forgahani, B.: Hierarchal scalar and vector tetrahedra. IEEE Trans. Magn. 29(2), 1495–1498 (1993)
16.
Zurück zum Zitat Geuzaine, C., Meys, B., Dular, P., Legros, W.: Convergence of high order curl-conforming finite elements [for EM field calculations]. IEEE Trans. Magn. 35(3), 1442–1445 (1999) Geuzaine, C., Meys, B., Dular, P., Legros, W.: Convergence of high order curl-conforming finite elements [for EM field calculations]. IEEE Trans. Magn. 35(3), 1442–1445 (1999)
17.
Zurück zum Zitat Graglia, R.D., Wilton, D.R., Peterson, A.F.: Higher-order interpolatory vector bases for computational electromagnetics. IEEE Trans. Antennas Propag. 45(3), 329–342 (1997) Graglia, R.D., Wilton, D.R., Peterson, A.F.: Higher-order interpolatory vector bases for computational electromagnetics. IEEE Trans. Antennas Propag. 45(3), 329–342 (1997)
18.
Zurück zum Zitat Webb, J.P.: Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. IEEE Trans. Antennas Propag. 47(8), 1244–1253 (1999)MathSciNetMATH Webb, J.P.: Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. IEEE Trans. Antennas Propag. 47(8), 1244–1253 (1999)MathSciNetMATH
19.
Zurück zum Zitat Díaz-Morcillo, A., Jin, J. M.: A comparison of hierarchical and interpolatory basis functions in the finite element analysis of waveguiding structures. In: IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313), vol. 4, pp. 710–713. IEEE (2002) Díaz-Morcillo, A., Jin, J. M.: A comparison of hierarchical and interpolatory basis functions in the finite element analysis of waveguiding structures. In: IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313), vol. 4, pp. 710–713. IEEE (2002)
20.
Zurück zum Zitat Ainsworth, M., Coyle, J.: Hierarchic \(hp\)-edge element families for Maxwell’s equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Eng. 190(49–50), 6709–6733 (2001)MathSciNetMATH Ainsworth, M., Coyle, J.: Hierarchic \(hp\)-edge element families for Maxwell’s equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Eng. 190(49–50), 6709–6733 (2001)MathSciNetMATH
21.
Zurück zum Zitat Ainsworth, M., Coyle, J.: Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Methods Eng. 58(14), 2103–2130 (2003)MathSciNetMATH Ainsworth, M., Coyle, J.: Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Methods Eng. 58(14), 2103–2130 (2003)MathSciNetMATH
22.
Zurück zum Zitat Ingelstrom, P.: A new set of H (curl)-conforming hierarchical basis functions for tetrahedral meshes. IEEE Trans. Microw. Theory Tech. 54(1), 106–114 (2006) Ingelstrom, P.: A new set of H (curl)-conforming hierarchical basis functions for tetrahedral meshes. IEEE Trans. Microw. Theory Tech. 54(1), 106–114 (2006)
23.
Zurück zum Zitat Jorgensen, E., Volakis, J.L., Meincke, P., Breinbjerg, O.: Higher-order hierarchical Legendre basis functions for electromagnetic modeling. IEEE Trans. Antennas Propag. 52(11), 2985–2995 (2004)MathSciNetMATH Jorgensen, E., Volakis, J.L., Meincke, P., Breinbjerg, O.: Higher-order hierarchical Legendre basis functions for electromagnetic modeling. IEEE Trans. Antennas Propag. 52(11), 2985–2995 (2004)MathSciNetMATH
24.
Zurück zum Zitat Rachowicz, W., Demkowicz, L.F.: An \(hp\)-adaptive finite element method for electromagnetics-part II: a 3D implementation. Int. J. Numer. Methods Eng. 53(1), 147–180 (2002)MATH Rachowicz, W., Demkowicz, L.F.: An \(hp\)-adaptive finite element method for electromagnetics-part II: a 3D implementation. Int. J. Numer. Methods Eng. 53(1), 147–180 (2002)MATH
25.
Zurück zum Zitat Schöberl, J., Zaglmayr, S.: High-order Nédélec elements with local complete sequence properties. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 24(2), 374–384 (2005)MATH Schöberl, J., Zaglmayr, S.: High-order Nédélec elements with local complete sequence properties. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 24(2), 374–384 (2005)MATH
26.
Zurück zum Zitat Sun, D.K., Lee, J.F., Cendes, Z.J.: Construction of nearly orthogonal Nédélec bases for rapid convergence with multilevel preconditioned solvers. SIAM J. Sci. Comput. 23(4), 1053–1076 (2001)MathSciNetMATH Sun, D.K., Lee, J.F., Cendes, Z.J.: Construction of nearly orthogonal Nédélec bases for rapid convergence with multilevel preconditioned solvers. SIAM J. Sci. Comput. 23(4), 1053–1076 (2001)MathSciNetMATH
27.
Zurück zum Zitat Abdul-Rahman, R., Kasper, M.: Orthogonal hierarchical Nédélec elements. IEEE Trans. Magn. 44(6), 1210–1213 (2008) Abdul-Rahman, R., Kasper, M.: Orthogonal hierarchical Nédélec elements. IEEE Trans. Magn. 44(6), 1210–1213 (2008)
28.
Zurück zum Zitat Graglia, R.D., Peterson, A.F., Andriulli, F.P.: Curl-conforming hierarchical vector bases for triangles and tetrahedra. IEEE Trans. Antennas Propag. 59(3), 950–959 (2010)MathSciNetMATH Graglia, R.D., Peterson, A.F., Andriulli, F.P.: Curl-conforming hierarchical vector bases for triangles and tetrahedra. IEEE Trans. Antennas Propag. 59(3), 950–959 (2010)MathSciNetMATH
29.
Zurück zum Zitat Perugia, I., Schötzau, D., Monk, P.: Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 191(41–42), 4675–4697 (2002)MathSciNetMATH Perugia, I., Schötzau, D., Monk, P.: Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 191(41–42), 4675–4697 (2002)MathSciNetMATH
30.
Zurück zum Zitat Hesthaven, J.S., Warburton, T.: High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362(1816), 493–524 (2004)MathSciNetMATH Hesthaven, J.S., Warburton, T.: High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362(1816), 493–524 (2004)MathSciNetMATH
31.
Zurück zum Zitat Houston, P., Perugia, I., Schneebeli, A., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator: the indefinite case. ESAIM Math. Model. Numer. Anal. 39(4), 727–753 (2005)MathSciNetMATH Houston, P., Perugia, I., Schneebeli, A., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator: the indefinite case. ESAIM Math. Model. Numer. Anal. 39(4), 727–753 (2005)MathSciNetMATH
32.
Zurück zum Zitat Houston, P., Perugia, I., Schneebeli, A., Schötzau, D.: Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100(3), 485–518 (2005)MathSciNetMATH Houston, P., Perugia, I., Schneebeli, A., Schötzau, D.: Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100(3), 485–518 (2005)MathSciNetMATH
33.
Zurück zum Zitat Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44(5), 2198–2226 (2006)MathSciNetMATH Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44(5), 2198–2226 (2006)MathSciNetMATH
34.
Zurück zum Zitat Warburton, T., Embree, M.: The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem. Comput. Methods Appl. Mech. Eng. 195(25–28), 3205–3223 (2006)MathSciNetMATH Warburton, T., Embree, M.: The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem. Comput. Methods Appl. Mech. Eng. 195(25–28), 3205–3223 (2006)MathSciNetMATH
35.
Zurück zum Zitat Lohrengel, S., Nicaise, S.: A discontinuous Galerkin method on refined meshes for the two-dimensional time-harmonic Maxwell equations in composite materials. J. Comput. Appl. Math. 206(1), 27–54 (2007)MathSciNetMATH Lohrengel, S., Nicaise, S.: A discontinuous Galerkin method on refined meshes for the two-dimensional time-harmonic Maxwell equations in composite materials. J. Comput. Appl. Math. 206(1), 27–54 (2007)MathSciNetMATH
36.
Zurück zum Zitat Dolean, V., Fol, H., Lanteri, S., Perrussel, R.: Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods. J. Comput. Appl. Math. 218(2), 435–445 (2008)MathSciNetMATH Dolean, V., Fol, H., Lanteri, S., Perrussel, R.: Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods. J. Comput. Appl. Math. 218(2), 435–445 (2008)MathSciNetMATH
37.
Zurück zum Zitat El Bouajaji, M., Lanteri, S.: High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell’s equations. Appl. Math. Comput. 219(13), 7241–7251 (2013)MathSciNetMATH El Bouajaji, M., Lanteri, S.: High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell’s equations. Appl. Math. Comput. 219(13), 7241–7251 (2013)MathSciNetMATH
38.
Zurück zum Zitat Hiptmair, R., Moiola, A., Perugia, I.: Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. 82(281), 247–268 (2013)MathSciNetMATH Hiptmair, R., Moiola, A., Perugia, I.: Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. 82(281), 247–268 (2013)MathSciNetMATH
39.
Zurück zum Zitat Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230(19), 7151–7175 (2011)MathSciNetMATH Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230(19), 7151–7175 (2011)MathSciNetMATH
40.
Zurück zum Zitat Li, L., Lanteri, S., Perrussel, R.: Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2D time-harmonic Maxwell’s equations. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. (2013) Li, L., Lanteri, S., Perrussel, R.: Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2D time-harmonic Maxwell’s equations. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. (2013)
41.
Zurück zum Zitat Li, L., Lanteri, S., Perrussel, R.: A class of locally well-posed hybridizable discontinuous Galerkin methods for the solution of time-harmonic Maxwell’s equations. Comput. Phys. Commun. 192, 23–31 (2015)MathSciNetMATH Li, L., Lanteri, S., Perrussel, R.: A class of locally well-posed hybridizable discontinuous Galerkin methods for the solution of time-harmonic Maxwell’s equations. Comput. Phys. Commun. 192, 23–31 (2015)MathSciNetMATH
42.
Zurück zum Zitat Lu, P., Chen, H., Qiu, W.: An absolutely stable \(hp\)-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comput. 86(306), 1553–1577 (2017)MathSciNetMATH Lu, P., Chen, H., Qiu, W.: An absolutely stable \(hp\)-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comput. 86(306), 1553–1577 (2017)MathSciNetMATH
43.
Zurück zum Zitat Zhu, L., Huang, T.Z., Li, L.: A hybrid-mesh hybridizable discontinuous Galerkin method for solving the time-harmonic Maxwell’s equations. Appl. Math. Lett. 68, 109–116 (2017)MathSciNetMATH Zhu, L., Huang, T.Z., Li, L.: A hybrid-mesh hybridizable discontinuous Galerkin method for solving the time-harmonic Maxwell’s equations. Appl. Math. Lett. 68, 109–116 (2017)MathSciNetMATH
44.
Zurück zum Zitat Agullo, E., Giraud, L., Gobé, A., Kuhn, M., Lanteri, S., Moya, L.: High order HDG method and domain decomposition solvers for frequency-domain electromagnetics. Int. J. Numer. Model. Electron. Networks Devices Fields 33(2), e2678 (2020) Agullo, E., Giraud, L., Gobé, A., Kuhn, M., Lanteri, S., Moya, L.: High order HDG method and domain decomposition solvers for frequency-domain electromagnetics. Int. J. Numer. Model. Electron. Networks Devices Fields 33(2), e2678 (2020)
45.
Zurück zum Zitat Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations, vol. 110. Cambridge University Press, Cambridge (2007)MATH Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations, vol. 110. Cambridge University Press, Cambridge (2007)MATH
46.
Zurück zum Zitat Ainsworth, M., Andriamaro, M.G., Davydov, O.: Bernstein-Bézier finite elements of arbitrary order and optimal assembly procedures. SIAM J. Sci. Comput. 33(6), 3087–3109 (2011)MathSciNetMATH Ainsworth, M., Andriamaro, M.G., Davydov, O.: Bernstein-Bézier finite elements of arbitrary order and optimal assembly procedures. SIAM J. Sci. Comput. 33(6), 3087–3109 (2011)MathSciNetMATH
47.
Zurück zum Zitat Lohmann, C., Kuzmin, D., Shadid, J.N., Mabuza, S.: Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements. J. Comput. Phys. 344, 151–186 (2017)MathSciNetMATH Lohmann, C., Kuzmin, D., Shadid, J.N., Mabuza, S.: Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements. J. Comput. Phys. 344, 151–186 (2017)MathSciNetMATH
48.
Zurück zum Zitat El Kacimi, A., Laghrouche, O., Mohamed, M.S., Trevelyan, J.: Bernstein-Bézier based finite elements for efficient solution of short wave problems. Comput. Methods Appl. Mech. Eng. 343, 166–185 (2019)MATH El Kacimi, A., Laghrouche, O., Mohamed, M.S., Trevelyan, J.: Bernstein-Bézier based finite elements for efficient solution of short wave problems. Comput. Methods Appl. Mech. Eng. 343, 166–185 (2019)MATH
49.
Zurück zum Zitat El Kacimi, A., Laghrouche, O., Ouazar, D., Mohamed, M.S., Seaid, M., Trevelyan, J.: Enhanced conformal perfectly matched layers for Bernstein–Bézier finite element modelling of short wave scattering. Comput. Methods Appl. Mech. Eng. 355, 614–638 (2019)MATH El Kacimi, A., Laghrouche, O., Ouazar, D., Mohamed, M.S., Seaid, M., Trevelyan, J.: Enhanced conformal perfectly matched layers for Bernstein–Bézier finite element modelling of short wave scattering. Comput. Methods Appl. Mech. Eng. 355, 614–638 (2019)MATH
50.
Zurück zum Zitat Peng, X., Xu, G., Zhou, A., Yang, Y., Ma, Z.: An adaptive Bernstein–Bézier finite element method for heat transfer analysis in welding. Adv. Eng. Softw. 148, 102–855 (2020) Peng, X., Xu, G., Zhou, A., Yang, Y., Ma, Z.: An adaptive Bernstein–Bézier finite element method for heat transfer analysis in welding. Adv. Eng. Softw. 148, 102–855 (2020)
51.
Zurück zum Zitat Benatia, N., El Kacimi, A., Laghrouche, O., El Alaoui Talibi, M., Trevelyan, J.: Frequency domain Bernstein–Bézier finite element solver for modelling short waves in elastodynamics. Appl. Math. Model. 102, 115–136 (2022)MathSciNetMATH Benatia, N., El Kacimi, A., Laghrouche, O., El Alaoui Talibi, M., Trevelyan, J.: Frequency domain Bernstein–Bézier finite element solver for modelling short waves in elastodynamics. Appl. Math. Model. 102, 115–136 (2022)MathSciNetMATH
52.
Zurück zum Zitat Engvall, L., Evans, J.A.: Isogeometric unstructured tetrahedral and mixed-element Bernstein–Bézier discretizations. Comput. Methods Appl. Mech. Eng. 319, 83–123 (2017)MATH Engvall, L., Evans, J.A.: Isogeometric unstructured tetrahedral and mixed-element Bernstein–Bézier discretizations. Comput. Methods Appl. Mech. Eng. 319, 83–123 (2017)MATH
53.
Zurück zum Zitat Farouki, R., Goodman, T.: On the optimal stability of the Bernstein basis. Math. Comput. 65(216), 1553–1566 (1996)MathSciNetMATH Farouki, R., Goodman, T.: On the optimal stability of the Bernstein basis. Math. Comput. 65(216), 1553–1566 (1996)MathSciNetMATH
54.
Zurück zum Zitat Farouki, R.T.: The Bernstein polynomial basis: a centennial retrospective. Comput. Aided Geometric Des. 29(6), 379–419 (2012)MathSciNetMATH Farouki, R.T.: The Bernstein polynomial basis: a centennial retrospective. Comput. Aided Geometric Des. 29(6), 379–419 (2012)MathSciNetMATH
55.
Zurück zum Zitat Kirby, R.C., Thinh, K.T.: Fast simplicial quadrature-based finite element operators using Bernstein polynomials. Numer. Math. 121(2), 261–279 (2012)MathSciNetMATH Kirby, R.C., Thinh, K.T.: Fast simplicial quadrature-based finite element operators using Bernstein polynomials. Numer. Math. 121(2), 261–279 (2012)MathSciNetMATH
56.
Zurück zum Zitat Kirby, R.C.: Low-complexity finite element algorithms for the de Rham complex on simplices. SIAM J. Sci. Comput. 36(2), A846–A868 (2014)MathSciNet Kirby, R.C.: Low-complexity finite element algorithms for the de Rham complex on simplices. SIAM J. Sci. Comput. 36(2), A846–A868 (2014)MathSciNet
57.
Zurück zum Zitat Ainsworth, M., Andriamaro, M.G., Davydov, O.: A Bernstein-Bézier basis for arbitrary order Raviart–Thomas finite elements. Constr. Approx. 41(1), 1–22 (2015)MathSciNetMATH Ainsworth, M., Andriamaro, M.G., Davydov, O.: A Bernstein-Bézier basis for arbitrary order Raviart–Thomas finite elements. Constr. Approx. 41(1), 1–22 (2015)MathSciNetMATH
58.
Zurück zum Zitat Ainsworth, M., Fu, G.: Bernstein-Bézier bases for tetrahedral finite elements. Comput. Methods Appl. Mech. Eng. 340, 178–201 (2018)MATH Ainsworth, M., Fu, G.: Bernstein-Bézier bases for tetrahedral finite elements. Comput. Methods Appl. Mech. Eng. 340, 178–201 (2018)MATH
59.
Zurück zum Zitat Arnold, D.N., Falk, R.S., Winther, R.: Geometric decompositions and local bases for spaces of finite element differential forms. Comput. Methods Appl. Mech. Eng. 198(21–26), 1660–1672 (2009)MathSciNetMATH Arnold, D.N., Falk, R.S., Winther, R.: Geometric decompositions and local bases for spaces of finite element differential forms. Comput. Methods Appl. Mech. Eng. 198(21–26), 1660–1672 (2009)MathSciNetMATH
60.
Zurück zum Zitat Gordon, W.J., Hall, C.A.: Construction of curvilinear coordinate systems and applications to mesh generation. Int. J. Numer. Methods Eng. 7(4), 461–477 (1973)MATH Gordon, W.J., Hall, C.A.: Construction of curvilinear coordinate systems and applications to mesh generation. Int. J. Numer. Methods Eng. 7(4), 461–477 (1973)MATH
61.
Zurück zum Zitat Gordon, W.J., Hall, C.A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21(2), 109–129 (1973)MathSciNetMATH Gordon, W.J., Hall, C.A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21(2), 109–129 (1973)MathSciNetMATH
62.
Zurück zum Zitat Hiptmair, R., Moiola, A., Perugia, I.: Stability results for the time-harmonic Maxwell equations with impedance boundary conditions. Math. Models Methods Appl. Sci. 21(11), 2263–2287 (2011)MathSciNetMATH Hiptmair, R., Moiola, A., Perugia, I.: Stability results for the time-harmonic Maxwell equations with impedance boundary conditions. Math. Models Methods Appl. Sci. 21(11), 2263–2287 (2011)MathSciNetMATH
63.
Zurück zum Zitat Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93. Springer Nature, Berlin (2019)MATH Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93. Springer Nature, Berlin (2019)MATH
64.
Zurück zum Zitat Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)MATH Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)MATH
65.
Zurück zum Zitat Demkowicz, L.F.: Finite element methods for Maxwell’s equations. Encyclopedia of Computational Mechanics, 2nd edn., pp. 1–20 (2017) Demkowicz, L.F.: Finite element methods for Maxwell’s equations. Encyclopedia of Computational Mechanics, 2nd edn., pp. 1–20 (2017)
66.
Zurück zum Zitat Nicaise, S., Tomezyk, J.: Convergence analysis of a \(hp\)-finite element approximation of the time-harmonic Maxwell equations with impedance boundary conditions in domains with an analytic boundary. Numer. Methods Partial Differ. Equ. 36(6), 1868–1903 (2020)MathSciNet Nicaise, S., Tomezyk, J.: Convergence analysis of a \(hp\)-finite element approximation of the time-harmonic Maxwell equations with impedance boundary conditions in domains with an analytic boundary. Numer. Methods Partial Differ. Equ. 36(6), 1868–1903 (2020)MathSciNet
67.
Zurück zum Zitat Kirsch, A., Monk, P.: A finite element/spectral method for approximating the time-harmonic Maxwell system in \({\mathbb{R} }^{3}\). SIAM J. Appl. Math. 55(5), 1324–1344 (1995)MathSciNetMATH Kirsch, A., Monk, P.: A finite element/spectral method for approximating the time-harmonic Maxwell system in \({\mathbb{R} }^{3}\). SIAM J. Appl. Math. 55(5), 1324–1344 (1995)MathSciNetMATH
68.
Zurück zum Zitat Monk, P.: A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63(1), 243–261 (1992)MathSciNetMATH Monk, P.: A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63(1), 243–261 (1992)MathSciNetMATH
69.
Zurück zum Zitat Rognes, M.E., Kirby, R.C., Logg, A.: Efficient assembly of H(div) and H(curl) conforming finite elements. SIAM J. Sci. Comput. 31(6), 4130–4151 (2010)MathSciNetMATH Rognes, M.E., Kirby, R.C., Logg, A.: Efficient assembly of H(div) and H(curl) conforming finite elements. SIAM J. Sci. Comput. 31(6), 4130–4151 (2010)MathSciNetMATH
70.
Zurück zum Zitat P. Ŝolín, Segeth, K., Dolezel, I.: Higher-Order Finite Element Methods. CRC Press, Cambridge (2003) P. Ŝolín, Segeth, K., Dolezel, I.: Higher-Order Finite Element Methods. CRC Press, Cambridge (2003)
71.
Zurück zum Zitat Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Berlin (2013)MATH Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Berlin (2013)MATH
72.
Zurück zum Zitat Andriamaro, M.G.: Bernstein–Bézier techniques and optimal algorithms in finite element analysis. Ph.D. thesis, University of Strathclyde (2013) Andriamaro, M.G.: Bernstein–Bézier techniques and optimal algorithms in finite element analysis. Ph.D. thesis, University of Strathclyde (2013)
73.
Zurück zum Zitat Gopalakrishnan, J., García-Castillo, L.E., Demkowicz, L.F.: Nédélec spaces in affine coordinates. Comput. Math. Appl. 49(7), 1285–1294 (2005)MathSciNetMATH Gopalakrishnan, J., García-Castillo, L.E., Demkowicz, L.F.: Nédélec spaces in affine coordinates. Comput. Math. Appl. 49(7), 1285–1294 (2005)MathSciNetMATH
74.
Zurück zum Zitat Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)MATH Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)MATH
75.
Zurück zum Zitat Amestoy, P.R., Duff, I.S., L’excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2–4), 501–520 (2000)MATH Amestoy, P.R., Duff, I.S., L’excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2–4), 501–520 (2000)MATH
76.
Zurück zum Zitat Jin, J.M.: Theory and Computation of Electromagnetic Fields. Wiley, New York (2015) Jin, J.M.: Theory and Computation of Electromagnetic Fields. Wiley, New York (2015)
77.
Zurück zum Zitat Dolean, V., Gander, M.J., Gerardo-Giorda, L.: Optimized Schwarz methods for Maxwell’s equations. SIAM J. Sci. Comput. 31(3), 2193–2213 (2009)MathSciNetMATH Dolean, V., Gander, M.J., Gerardo-Giorda, L.: Optimized Schwarz methods for Maxwell’s equations. SIAM J. Sci. Comput. 31(3), 2193–2213 (2009)MathSciNetMATH
78.
Zurück zum Zitat Rawat, V., Lee, J.F.: Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell’s equations. SIAM J. Sci. Comput. 32(6), 3584–3603 (2010)MathSciNetMATH Rawat, V., Lee, J.F.: Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell’s equations. SIAM J. Sci. Comput. 32(6), 3584–3603 (2010)MathSciNetMATH
79.
Zurück zum Zitat El Bouajaji, M., Thierry, B., Antoine, X., Geuzaine, C.: A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell’s equations. J. Comput. Phys. 294, 38–57 (2015)MathSciNetMATH El Bouajaji, M., Thierry, B., Antoine, X., Geuzaine, C.: A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell’s equations. J. Comput. Phys. 294, 38–57 (2015)MathSciNetMATH
Metadaten
Titel
Bernstein–Bézier -Conforming Finite Elements for Time-Harmonic Electromagnetic Scattering Problems
verfasst von
Nawfel Benatia
Abdellah El Kacimi
Omar Laghrouche
Ahmed Ratnani
Publikationsdatum
01.12.2023
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2023
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-023-02381-5

Weitere Artikel der Ausgabe 3/2023

Journal of Scientific Computing 3/2023 Zur Ausgabe

Premium Partner