Skip to main content
Erschienen in: Foundations of Computational Mathematics 6/2015

01.12.2015

Besov regularity for operator equations on patchwise smooth manifolds

verfasst von: Stephan Dahlke, Markus Weimar

Erschienen in: Foundations of Computational Mathematics | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study regularity properties of solutions to operator equations on patchwise smooth manifolds \(\partial \Omega \), e.g., boundaries of polyhedral domains \(\Omega \subset \mathbb {R}^3\). Using suitable biorthogonal wavelet bases \(\Psi \), we introduce a new class of Besov-type spaces \(B_{\Psi ,q}^\alpha (L_p(\partial \Omega ))\) of functions \(u:\partial \Omega \rightarrow \mathbb {C}\). Special attention is paid on the rate of convergence for best n-term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on \(\partial \Omega \) into \(B_{\Psi ,\tau }^\alpha (L_\tau (\partial \Omega )), 1/\tau =\alpha /2 + 1/2\), which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double-layer ansatz for Dirichlet problems for Laplace’s equation in \(\Omega \).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen, and K. Urban. Adaptive wavelet schemes for elliptic problems: Implementation and numerical experiments. SIAM J. Sci. Comput., 23(3):910–939, 2001.MATHMathSciNetCrossRef A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen, and K. Urban. Adaptive wavelet schemes for elliptic problems: Implementation and numerical experiments. SIAM J. Sci. Comput., 23(3):910–939, 2001.MATHMathSciNetCrossRef
2.
Zurück zum Zitat J. Bergh and J. Löfström. Interpolation Spaces. An Introduction. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1976. J. Bergh and J. Löfström. Interpolation Spaces. An Introduction. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1976.
3.
Zurück zum Zitat C. Canuto, A. Tabacco, and K. Urban. The wavelet element method part I: Construction and analysis. Appl. Comput. Harmon. Anal., 6(1):1–52, 1999.MATHMathSciNetCrossRef C. Canuto, A. Tabacco, and K. Urban. The wavelet element method part I: Construction and analysis. Appl. Comput. Harmon. Anal., 6(1):1–52, 1999.MATHMathSciNetCrossRef
4.
Zurück zum Zitat C. Canuto, A. Tabacco, and K. Urban. The wavelet element method part II: Realization and additional features in 2D and 3D. Appl. Comput. Harmon. Anal., 8(2):123–165, 2000.MATHMathSciNetCrossRef C. Canuto, A. Tabacco, and K. Urban. The wavelet element method part II: Realization and additional features in 2D and 3D. Appl. Comput. Harmon. Anal., 8(2):123–165, 2000.MATHMathSciNetCrossRef
5.
Zurück zum Zitat P. Cioica, S. Dahlke, S. Kinzel, F. Lindner, T. Raasch, K. Ritter, and R. Schilling. Spatial Besov regularity for stochatic partial differential equations on Lipschitz domains. Studia Math., 207(3):197–234, 2011.MATHMathSciNetCrossRef P. Cioica, S. Dahlke, S. Kinzel, F. Lindner, T. Raasch, K. Ritter, and R. Schilling. Spatial Besov regularity for stochatic partial differential equations on Lipschitz domains. Studia Math., 207(3):197–234, 2011.MATHMathSciNetCrossRef
6.
Zurück zum Zitat A. Cohen, W. Dahmen, and R. A. DeVore. Adaptive wavelet methods for elliptic operator equations: Convergence rates. Math. Comp., 70:27–75, 2001.MATHMathSciNetCrossRef A. Cohen, W. Dahmen, and R. A. DeVore. Adaptive wavelet methods for elliptic operator equations: Convergence rates. Math. Comp., 70:27–75, 2001.MATHMathSciNetCrossRef
7.
Zurück zum Zitat A. Cohen, W. Dahmen, and R. A. DeVore. Adaptive wavelet methods II: Beyond the elliptic case. J. Found. Comput. Math., 2(3):203–245, 2002.MATHMathSciNetCrossRef A. Cohen, W. Dahmen, and R. A. DeVore. Adaptive wavelet methods II: Beyond the elliptic case. J. Found. Comput. Math., 2(3):203–245, 2002.MATHMathSciNetCrossRef
8.
Zurück zum Zitat A. Cohen, W. Dahmen, and R. A. DeVore. Adaptive wavelet schemes for nonlinear variational problems. SIAM J. Numer. Anal., 41(5):1785–1823, 2003.MATHMathSciNetCrossRef A. Cohen, W. Dahmen, and R. A. DeVore. Adaptive wavelet schemes for nonlinear variational problems. SIAM J. Numer. Anal., 41(5):1785–1823, 2003.MATHMathSciNetCrossRef
9.
Zurück zum Zitat A. Cohen and R. Masson. Wavelet adaptive method for second order elliptic problems: Boundary conditions and domain decomposition. Numer. Math., 86(2):193–238, 2000.MATHMathSciNetCrossRef A. Cohen and R. Masson. Wavelet adaptive method for second order elliptic problems: Boundary conditions and domain decomposition. Numer. Math., 86(2):193–238, 2000.MATHMathSciNetCrossRef
10.
Zurück zum Zitat M. Costabel. Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal., 19(3):613–626, 1988.MATHMathSciNetCrossRef M. Costabel. Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal., 19(3):613–626, 1988.MATHMathSciNetCrossRef
11.
Zurück zum Zitat B. E. Dahlberg and C. E. Kenig. Hardy spaces and the Neumann problem in \(L^p\) for Laplace’s equation in Lipschitz domains. Ann. Math. (2), 125:437–465, 1987.MathSciNetCrossRef B. E. Dahlberg and C. E. Kenig. Hardy spaces and the Neumann problem in \(L^p\) for Laplace’s equation in Lipschitz domains. Ann. Math. (2), 125:437–465, 1987.MathSciNetCrossRef
12.
Zurück zum Zitat S. Dahlke. Besov regularity for elliptic boundary value problems on polygonal domains. Appl. Math. Lett., 12:31–38, 1999.MATHMathSciNetCrossRef S. Dahlke. Besov regularity for elliptic boundary value problems on polygonal domains. Appl. Math. Lett., 12:31–38, 1999.MATHMathSciNetCrossRef
13.
Zurück zum Zitat S. Dahlke. Besov regularity for the Stokes problem. In W. Haußmann, K. Jetter, and M. Reimer, editors, Advances in Multivariate Approximation, pages 129–138, Berlin, 1999. Wiley VCH, Mathematical Research 107. S. Dahlke. Besov regularity for the Stokes problem. In W. Haußmann, K. Jetter, and M. Reimer, editors, Advances in Multivariate Approximation, pages 129–138, Berlin, 1999. Wiley VCH, Mathematical Research 107.
14.
Zurück zum Zitat S. Dahlke, W. Dahmen, and R. A. Devore. Nonlinear approximation and adaptive techniques for solving elliptic operator equations. In W. Dahmen, A. Kurdila, and P. Oswald, editors, Multsicale Wavelet Methods for Partial Differential Equations, pages 237–283, San Diego, 1997. Academic Press.CrossRef S. Dahlke, W. Dahmen, and R. A. Devore. Nonlinear approximation and adaptive techniques for solving elliptic operator equations. In W. Dahmen, A. Kurdila, and P. Oswald, editors, Multsicale Wavelet Methods for Partial Differential Equations, pages 237–283, San Diego, 1997. Academic Press.CrossRef
15.
Zurück zum Zitat S. Dahlke, W. Dahmen, R. Hochmuth, and R. Schneider. Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math., 23(1):21–48, 1997.MATHMathSciNetCrossRef S. Dahlke, W. Dahmen, R. Hochmuth, and R. Schneider. Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math., 23(1):21–48, 1997.MATHMathSciNetCrossRef
16.
Zurück zum Zitat S. Dahlke, W. Dahmen, and K. Urban. Adaptive wavelet methods for saddle point problems – Optimal convergence rates. SIAM J. Numer. Anal., 40(4):1230–1262, 2002.MATHMathSciNetCrossRef S. Dahlke, W. Dahmen, and K. Urban. Adaptive wavelet methods for saddle point problems – Optimal convergence rates. SIAM J. Numer. Anal., 40(4):1230–1262, 2002.MATHMathSciNetCrossRef
17.
Zurück zum Zitat S. Dahlke and R. A. DeVore. Besov regularity for elliptic boundary value problems. Comm. Partial Differential Equations, 22(1-2):1–16, 1997.MATHMathSciNetCrossRef S. Dahlke and R. A. DeVore. Besov regularity for elliptic boundary value problems. Comm. Partial Differential Equations, 22(1-2):1–16, 1997.MATHMathSciNetCrossRef
18.
Zurück zum Zitat S. Dahlke, L. Diening, C. Hartmann, B. Scharf, and M. Weimar. Besov regularity of solutions to the \(p\)-Poisson equation. Preprint 2014–07, Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, 2014. Submitted. S. Dahlke, L. Diening, C. Hartmann, B. Scharf, and M. Weimar. Besov regularity of solutions to the \(p\)-Poisson equation. Preprint 2014–07, Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, 2014. Submitted.
19.
Zurück zum Zitat S. Dahlke, E. Novak, and W. Sickel. Optimal approximation of elliptic problems by linear and nonlinear mappings II. J. Complexity, 22(4):549–603, 2006.MATHMathSciNetCrossRef S. Dahlke, E. Novak, and W. Sickel. Optimal approximation of elliptic problems by linear and nonlinear mappings II. J. Complexity, 22(4):549–603, 2006.MATHMathSciNetCrossRef
20.
Zurück zum Zitat S. Dahlke and W. Sickel. Besov regularity for the poisson equation in smooth and polyhedral cones. In V. Mazya, editor, Sobolev Spaces in Mathematics II, Applications to Partial Differential Equations, pages 123–146. Springer, 2008. S. Dahlke and W. Sickel. Besov regularity for the poisson equation in smooth and polyhedral cones. In V. Mazya, editor, Sobolev Spaces in Mathematics II, Applications to Partial Differential Equations, pages 123–146. Springer, 2008.
21.
Zurück zum Zitat S. Dahlke and W. Sickel. On Besov regularity of solutions to nonlinear elliptic partial differential equations. Rev. Mat. Complut., 26(1):115–145, 2013.MATHMathSciNetCrossRef S. Dahlke and W. Sickel. On Besov regularity of solutions to nonlinear elliptic partial differential equations. Rev. Mat. Complut., 26(1):115–145, 2013.MATHMathSciNetCrossRef
22.
23.
Zurück zum Zitat W. Dahmen, H. Harbrecht, and R. Schneider. Adaptive methods for boundary integral equations: Complexity and convergence estimates. Math. Comp., 76:1243–1274, 1998.MathSciNetCrossRef W. Dahmen, H. Harbrecht, and R. Schneider. Adaptive methods for boundary integral equations: Complexity and convergence estimates. Math. Comp., 76:1243–1274, 1998.MathSciNetCrossRef
24.
26.
Zurück zum Zitat R. A. DeVore, B. Jawerth, and V. Popov. Compression of wavelet decompositions. Am. J. Math., 114(4):737–785, 1992.MATHMathSciNetCrossRef R. A. DeVore, B. Jawerth, and V. Popov. Compression of wavelet decompositions. Am. J. Math., 114(4):737–785, 1992.MATHMathSciNetCrossRef
27.
Zurück zum Zitat J. Elschner. The double layer potential operator over polyhedral domains I: Solvability in weighted Sobolev spaces. Appl. Anal., 45:117–134, 1992.MATHMathSciNetCrossRef J. Elschner. The double layer potential operator over polyhedral domains I: Solvability in weighted Sobolev spaces. Appl. Anal., 45:117–134, 1992.MATHMathSciNetCrossRef
28.
Zurück zum Zitat M. Frazier and B. Jawerth. A discrete transform and decomposition of distribution spaces. J. Funct. Anal., 93(1):297–318, 1990.MathSciNetCrossRef M. Frazier and B. Jawerth. A discrete transform and decomposition of distribution spaces. J. Funct. Anal., 93(1):297–318, 1990.MathSciNetCrossRef
29.
Zurück zum Zitat M. Hansen. Nonlinear approximation rates and Besov regularity for elliptic PDEs on polyhedral domains. J. Found. Comput. Math., 15(2):561–589, 2015. M. Hansen. Nonlinear approximation rates and Besov regularity for elliptic PDEs on polyhedral domains. J. Found. Comput. Math., 15(2):561–589, 2015.
30.
Zurück zum Zitat M. Hansen and W. Sickel. Best \(m\)-term approximation and Lizorkin-Triebel spaces. J. Approx. Theory, 163(8):923–954, 2011.MATHMathSciNetCrossRef M. Hansen and W. Sickel. Best \(m\)-term approximation and Lizorkin-Triebel spaces. J. Approx. Theory, 163(8):923–954, 2011.MATHMathSciNetCrossRef
31.
Zurück zum Zitat H. Harbrecht and R. Schneider. Adaptive wavelet Galerkin BEM. In K. Bathe, editor, Computational Fluid and Solid Mechanics 2003, pages 1982–1986. Elsevier, 2003. H. Harbrecht and R. Schneider. Adaptive wavelet Galerkin BEM. In K. Bathe, editor, Computational Fluid and Solid Mechanics 2003, pages 1982–1986. Elsevier, 2003.
32.
Zurück zum Zitat H. Harbrecht and R. Schneider. Biorthogonal wavelet bases for the boundary element method. Math. Nachr., 269–270:167–188, 2004.MathSciNetCrossRef H. Harbrecht and R. Schneider. Biorthogonal wavelet bases for the boundary element method. Math. Nachr., 269–270:167–188, 2004.MathSciNetCrossRef
33.
34.
Zurück zum Zitat L. I. Hedberg and Y. Netrusov. An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation. Memoirs of the AMS, Providence, RI, 2007. L. I. Hedberg and Y. Netrusov. An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation. Memoirs of the AMS, Providence, RI, 2007.
35.
Zurück zum Zitat D. S. Jerison and C. E. Kenig. The Dirichlet problem in non-smooth domains. Ann. Math. (2), 113:367–382, 1981.MathSciNetCrossRef D. S. Jerison and C. E. Kenig. The Dirichlet problem in non-smooth domains. Ann. Math. (2), 113:367–382, 1981.MathSciNetCrossRef
36.
Zurück zum Zitat D. S. Jerison and C. E. Kenig. The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal., 130(1):161–219, 1995.MATHMathSciNetCrossRef D. S. Jerison and C. E. Kenig. The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal., 130(1):161–219, 1995.MATHMathSciNetCrossRef
37.
Zurück zum Zitat N. Kalton, S. Mayboroda, and M. Mitrea. Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations. In L. De Carli and M. Milman, editors, Interpolation Theory and Applications, volume 445 of Contemporary Mathematics, pages 121–177, Providence, RI, 2007. Amer. Math. Soc. N. Kalton, S. Mayboroda, and M. Mitrea. Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations. In L. De Carli and M. Milman, editors, Interpolation Theory and Applications, volume 445 of Contemporary Mathematics, pages 121–177, Providence, RI, 2007. Amer. Math. Soc.
39.
Zurück zum Zitat C. E. Kenig. Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, volume 83 of Regional Conference Series in Mathematics. Amer. Math. Soc., Providence, RI, 1994. C. E. Kenig. Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, volume 83 of Regional Conference Series in Mathematics. Amer. Math. Soc., Providence, RI, 1994.
41.
Zurück zum Zitat V. G. Maz’ya and B. A. Plamenevskiĭ. The first boundary value problem for the classical equations of mathematical physics in domains with piecewise smooth boundaries I. Zeitschr. Anal. Anwend., 2:335–359, 1983.MATH V. G. Maz’ya and B. A. Plamenevskiĭ. The first boundary value problem for the classical equations of mathematical physics in domains with piecewise smooth boundaries I. Zeitschr. Anal. Anwend., 2:335–359, 1983.MATH
42.
Zurück zum Zitat O. Mendez and M. Mitrea. The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations. J. Fourier Anal. Appl., 6(5):503–531, 2000.MATHMathSciNetCrossRef O. Mendez and M. Mitrea. The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations. J. Fourier Anal. Appl., 6(5):503–531, 2000.MATHMathSciNetCrossRef
43.
Zurück zum Zitat G. Of, O. Steinbach, and W. L. Wendland. The fast multipole method for symmetric boundary integral formulation. IMA J. Numer. Anal., 26(2):272–296, 2006.MATHMathSciNetCrossRef G. Of, O. Steinbach, and W. L. Wendland. The fast multipole method for symmetric boundary integral formulation. IMA J. Numer. Anal., 26(2):272–296, 2006.MATHMathSciNetCrossRef
44.
Zurück zum Zitat T. Runst and W. Sickel. Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations. de Gruyter, Berlin, 1996. T. Runst and W. Sickel. Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations. de Gruyter, Berlin, 1996.
45.
Zurück zum Zitat S. A. Sauter and C. Schwab. Boundary Element Methods, volume 39 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2011. S. A. Sauter and C. Schwab. Boundary Element Methods, volume 39 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2011.
46.
Zurück zum Zitat C. Schneider. Traces in Besov and Triebel–Lizorkin spaces on domains. Math. Nachr., 284:275–302, 2011. C. Schneider. Traces in Besov and Triebel–Lizorkin spaces on domains. Math. Nachr., 284:275–302, 2011.
47.
Zurück zum Zitat R. Schneider. Multiskalen– und Wavelet–Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme. Teubner, 1998. R. Schneider. Multiskalen– und Wavelet–Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme. Teubner, 1998.
48.
Zurück zum Zitat R. Stevenson. Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal., 41(3):1074–1100, 2003.MATHMathSciNetCrossRef R. Stevenson. Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal., 41(3):1074–1100, 2003.MATHMathSciNetCrossRef
49.
Zurück zum Zitat R. Stevenson and M. Werner. A multiplicative Schwarz adaptive wavelet method for elliptic boundary value problems. Math. Comp., 78(266):619–644, 2009.MATHMathSciNetCrossRef R. Stevenson and M. Werner. A multiplicative Schwarz adaptive wavelet method for elliptic boundary value problems. Math. Comp., 78(266):619–644, 2009.MATHMathSciNetCrossRef
50.
Zurück zum Zitat H. Triebel. Theory of Function Spaces III. Birkhäuser, Basel, 2006.MATH H. Triebel. Theory of Function Spaces III. Birkhäuser, Basel, 2006.MATH
51.
Zurück zum Zitat G. Verchota. Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal., 59:572–611, 1984.MATHMathSciNetCrossRef G. Verchota. Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal., 59:572–611, 1984.MATHMathSciNetCrossRef
53.
Zurück zum Zitat M. Werner. Adaptive Wavelet Frame Domain Decomposition Methods for Elliptic Operator Equations. Logos–Verlag, 2009. M. Werner. Adaptive Wavelet Frame Domain Decomposition Methods for Elliptic Operator Equations. Logos–Verlag, 2009.
Metadaten
Titel
Besov regularity for operator equations on patchwise smooth manifolds
verfasst von
Stephan Dahlke
Markus Weimar
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 6/2015
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-015-9273-9

Weitere Artikel der Ausgabe 6/2015

Foundations of Computational Mathematics 6/2015 Zur Ausgabe

Premium Partner