Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 5/2010

01.09.2010 | Original Paper

Bias Correction for View-limited Lidar Scanning of Rock Outcrops for Structural Characterization

verfasst von: Matthew J. Lato, Mark S. Diederichs, D. Jean Hutchinson

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 5/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lidar is a remote sensing technology that uses time-of-flight and line-of-sight to calculate the accurate locations of physical objects in a known space (the known space is in relation to the scanner). The resultant point-cloud data can be used to virtually identify and measure geomechanical data such as joint set orientations, spacing and roughness. The line-of-sight property of static Lidar scanners results in occluded (hidden) zones in the point-cloud and significant quantifiable bias when analyzing the data generated from a single scanning location. While the use of multiple scanning locations and orientations, with merging of aligned (registered) scans, is recommended, practical limitations often limit setup to a single location or a consistent orientation with respect to the slope and rock structure. Such setups require correction for measurement bias. Recent advancements in Lidar scanning and processing technology have facilitated the routine use of Lidar data for geotechnical investigation. Current developments in static scanning have lead to large datasets and generated the need for automated bias correction methods. In addition to the traditional bias correction due to outcrop or scanline orientation, this paper presents a methodology for correction of measurement bias due to the orientation of a discrete discontinuity surface with respect to the line-of-sight of the Lidar scanner and for occlusion. Bias can be mathematically minimized from the analyzed discontinuity orientation data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abellan A, Jaboyedoff M, Oppikofer T, Vilaplana JM (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat Hazards Earth Syst Sci 9:365–372CrossRef Abellan A, Jaboyedoff M, Oppikofer T, Vilaplana JM (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat Hazards Earth Syst Sci 9:365–372CrossRef
Zurück zum Zitat Amann MC, Bosch T, Lescure M, Myllyla R (2001) Laser ranging: a critical review of usual techniques for distance measurement. Opt Eng 40(1):10–19CrossRef Amann MC, Bosch T, Lescure M, Myllyla R (2001) Laser ranging: a critical review of usual techniques for distance measurement. Opt Eng 40(1):10–19CrossRef
Zurück zum Zitat Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of rock support. Rock Mech 6:189–236CrossRef Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of rock support. Rock Mech 6:189–236CrossRef
Zurück zum Zitat Beacher GB (1980) Progressively censored sampling of rock joint traces. Math Geol 12(1):33–40CrossRef Beacher GB (1980) Progressively censored sampling of rock joint traces. Math Geol 12(1):33–40CrossRef
Zurück zum Zitat Beacher GB (1983) Statistical analysis of rock mass fracturing. Math Geol 15(2):329–348CrossRef Beacher GB (1983) Statistical analysis of rock mass fracturing. Math Geol 15(2):329–348CrossRef
Zurück zum Zitat Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256CrossRef Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256CrossRef
Zurück zum Zitat Bieniawski ZT (1989) Engineering rock mass classification. Wiley-Interscience, London Bieniawski ZT (1989) Engineering rock mass classification. Wiley-Interscience, London
Zurück zum Zitat Bonnaffe F, Jennette D, Andrews J (2007) A method for acquiring and processing ground-based Lidar data in difficult-to-access outcrops for use in three-dimensional, virtual-reality models. Geosphere 3:501–510CrossRef Bonnaffe F, Jennette D, Andrews J (2007) A method for acquiring and processing ground-based Lidar data in difficult-to-access outcrops for use in three-dimensional, virtual-reality models. Geosphere 3:501–510CrossRef
Zurück zum Zitat Buckley SJ, Howell JA, Enge HD, Kurz TH (2008) Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. J Geol Soc 165:625–638CrossRef Buckley SJ, Howell JA, Enge HD, Kurz TH (2008) Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. J Geol Soc 165:625–638CrossRef
Zurück zum Zitat Fekete S, Diederichs M, Lato M (2009) Geotechnical applications of Lidar scanning in tunnelling. RockEng. Diederichs and Grasselli, Toronto, pp 1–12 Fekete S, Diederichs M, Lato M (2009) Geotechnical applications of Lidar scanning in tunnelling. RockEng. Diederichs and Grasselli, Toronto, pp 1–12
Zurück zum Zitat Feng QH, Roshoff K (2004) In situ mapping and documentation of rock fases using a full-coverage 3-D laser scanning technique. Int J Rock Mech Min Sci 41(3):379CrossRef Feng QH, Roshoff K (2004) In situ mapping and documentation of rock fases using a full-coverage 3-D laser scanning technique. Int J Rock Mech Min Sci 41(3):379CrossRef
Zurück zum Zitat Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass chrazaterization. Rock Mech Rock Eng 42(i):631–665CrossRef Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass chrazaterization. Rock Mech Rock Eng 42(i):631–665CrossRef
Zurück zum Zitat Goodman RE (1980) Introduction to rock mechanics (Chapter 8). Wiley, Toronto Goodman RE (1980) Introduction to rock mechanics (Chapter 8). Wiley, Toronto
Zurück zum Zitat Hammah RE, Curran JH (1999) On distance measures for the fuzzy k-means algorithm for joint data. Rock Mech Rock Eng 32(1):1–27CrossRef Hammah RE, Curran JH (1999) On distance measures for the fuzzy k-means algorithm for joint data. Rock Mech Rock Eng 32(1):1–27CrossRef
Zurück zum Zitat Hanberg WC (2008) Using close range terrestrial digital photogrammetry for 3-D rock slope modelling and discontinuity mapping in the United States. Bull Eng Geol Environ 67:457–469CrossRef Hanberg WC (2008) Using close range terrestrial digital photogrammetry for 3-D rock slope modelling and discontinuity mapping in the United States. Bull Eng Geol Environ 67:457–469CrossRef
Zurück zum Zitat InnovMetric (2008) PolyWorks V10.1. InnovMetric, Quebec InnovMetric (2008) PolyWorks V10.1. InnovMetric, Quebec
Zurück zum Zitat Kemeny J, Post R (2003) Estimating three-dimensional rock discontinuty orientation from digital images of fracture traces. Comput Geosci 29:65–77CrossRef Kemeny J, Post R (2003) Estimating three-dimensional rock discontinuty orientation from digital images of fracture traces. Comput Geosci 29:65–77CrossRef
Zurück zum Zitat Kemeny J, Turner K (2008) Ground-based LiDAR rock slope mapping and assessment. Federal Highway Administration, p 114 Kemeny J, Turner K (2008) Ground-based LiDAR rock slope mapping and assessment. Federal Highway Administration, p 114
Zurück zum Zitat Kemeny J, Turner K, Norton B (2006) LIDAR for rock mass characterization: hardware, software, accuracy and best-practices. In: Tonon F, Kottenstette J (eds) Laser and photogrammetric methods for rock face characterization. ARMA Golden, Colorado Kemeny J, Turner K, Norton B (2006) LIDAR for rock mass characterization: hardware, software, accuracy and best-practices. In: Tonon F, Kottenstette J (eds) Laser and photogrammetric methods for rock face characterization. ARMA Golden, Colorado
Zurück zum Zitat Lan H, Martin CD, Lim CH (2007) Rockfall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard monitoring. Comput Geosci 33:262–279CrossRef Lan H, Martin CD, Lim CH (2007) Rockfall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard monitoring. Comput Geosci 33:262–279CrossRef
Zurück zum Zitat Lato M, Hutchinson J, Diederichs M, Kalenchuk K (2007) Evaluating block shape and block volume distributions of rock faces using LiDAR and 3DEC. Geophys Res Abstr (European Geosciences Union) 9:1–2 Lato M, Hutchinson J, Diederichs M, Kalenchuk K (2007) Evaluating block shape and block volume distributions of rock faces using LiDAR and 3DEC. Geophys Res Abstr (European Geosciences Union) 9:1–2
Zurück zum Zitat Lato M, Hutchinson DJ, Diederichs MS, Harrap R (2009) Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses. Int J Rock Mech Min Sci 46:194–199CrossRef Lato M, Hutchinson DJ, Diederichs MS, Harrap R (2009) Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses. Int J Rock Mech Min Sci 46:194–199CrossRef
Zurück zum Zitat Leica Geosystems HDS LLC (2008) Cyclone 602 Build 980, USA Leica Geosystems HDS LLC (2008) Cyclone 602 Build 980, USA
Zurück zum Zitat Lichti DD, Jamtsho S (2006) Angular resolution of terrestrial laser scanners. The Photogrammetric Record 21(114):141–160 Lichti DD, Jamtsho S (2006) Angular resolution of terrestrial laser scanners. The Photogrammetric Record 21(114):141–160
Zurück zum Zitat McCaffrey KW et al (2005) Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. J Geol Soc Lond 162:927–938CrossRef McCaffrey KW et al (2005) Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. J Geol Soc Lond 162:927–938CrossRef
Zurück zum Zitat Mechelke K, Kersten TP, Lindstaedt M (2007) Comparative investigation into the accuracy behaviour of the new generation of terrestrial laser scanning systems. Optical 3-D Measurement Techniques VIII. Gruen and Kahmen, Zurich, pp 319–327 Mechelke K, Kersten TP, Lindstaedt M (2007) Comparative investigation into the accuracy behaviour of the new generation of terrestrial laser scanning systems. Optical 3-D Measurement Techniques VIII. Gruen and Kahmen, Zurich, pp 319–327
Zurück zum Zitat Mekni M, Sahli N, Moulin B (2008) A geosimulation approach involving spatially-aware agents: A case study on the identification of risky areas for trains. SpringSim, Ottawa, pp 37–45 Mekni M, Sahli N, Moulin B (2008) A geosimulation approach involving spatially-aware agents: A case study on the identification of risky areas for trains. SpringSim, Ottawa, pp 37–45
Zurück zum Zitat Palmstrom A (1995) RMi—a rock mass characterization system for rock engineering purposes. University of Oslo, Oslo Palmstrom A (1995) RMi—a rock mass characterization system for rock engineering purposes. University of Oslo, Oslo
Zurück zum Zitat Park HJ, West TR (2002) Sampling bias of discontinuity orientation caused by linear sampling technique. Eng Geol 66:99–110CrossRef Park HJ, West TR (2002) Sampling bias of discontinuity orientation caused by linear sampling technique. Eng Geol 66:99–110CrossRef
Zurück zum Zitat Park ES, Cheon DS, Synn JH, Jung YB, Choi YK (2008) Characterization of discontinuities using 3-D Laser scanner. Am Rock Mech Assoc, San Francicso, USA Park ES, Cheon DS, Synn JH, Jung YB, Choi YK (2008) Characterization of discontinuities using 3-D Laser scanner. Am Rock Mech Assoc, San Francicso, USA
Zurück zum Zitat Peacock DCP (2006) Predicting variability in joint frequencies from boreholes. J Struct Geol 28:353–361CrossRef Peacock DCP (2006) Predicting variability in joint frequencies from boreholes. J Struct Geol 28:353–361CrossRef
Zurück zum Zitat Priest SD, Hudson JA (1976) Discontinuity spacings in rock. Int J Rock Mech Min Sci 13:135–148 Priest SD, Hudson JA (1976) Discontinuity spacings in rock. Int J Rock Mech Min Sci 13:135–148
Zurück zum Zitat Reid TR, Harrison JP (2000) A semi-automated methodology for discontinuity trace detection in digital images of rock mass exposures. Int J Rock Mech Min Sci 37:1073–1089CrossRef Reid TR, Harrison JP (2000) A semi-automated methodology for discontinuity trace detection in digital images of rock mass exposures. Int J Rock Mech Min Sci 37:1073–1089CrossRef
Zurück zum Zitat RocScience (2006) Dips 6.0. Structural data processing software. Toronto RocScience (2006) Dips 6.0. Structural data processing software. Toronto
Zurück zum Zitat Roncella R, Forlani G (2005) Extraction of planar patches from point clouds to retrieve dip and dip direction of rock discontinuities. ISPRS WG III/3, III/4, V/3 Workshop “Laser scanning 2005”. Enschede, Netherlands Roncella R, Forlani G (2005) Extraction of planar patches from point clouds to retrieve dip and dip direction of rock discontinuities. ISPRS WG III/3, III/4, V/3 Workshop “Laser scanning 2005”. Enschede, Netherlands
Zurück zum Zitat Rosser N, Dunning SA, Lim M, Petley DN (2005) Terrestrial laser scanning for quantitative rockfall hazard assessment. In: Hunger O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Balkema, Rotterdam, p 091 Rosser N, Dunning SA, Lim M, Petley DN (2005) Terrestrial laser scanning for quantitative rockfall hazard assessment. In: Hunger O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Balkema, Rotterdam, p 091
Zurück zum Zitat Slob S, Hack R, van Knapen B, Turner K, Kemeny J (2005) A Method for automated discontinuity analysis of rock slopes with 3D laser scanning. Transportation Research Board, Washington DC Slob S, Hack R, van Knapen B, Turner K, Kemeny J (2005) A Method for automated discontinuity analysis of rock slopes with 3D laser scanning. Transportation Research Board, Washington DC
Zurück zum Zitat Sturzenegger M, Stead D (2009a) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182CrossRef Sturzenegger M, Stead D (2009a) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182CrossRef
Zurück zum Zitat Sturzenegger M, Stead D (2009b) Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat Hazards Earth Syst Sci 9:267–287CrossRef Sturzenegger M, Stead D (2009b) Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat Hazards Earth Syst Sci 9:267–287CrossRef
Zurück zum Zitat Sturzenegger M, Yan M, Stead D, Elmo D (2007) Applications and limitations of ground-based laser scanning in rock slope characterization. In: Eberhardt E, Stead D, Morrison T (eds) Proceedings of the first Canadian US rock mechanics symposium, vol 1. Taylor and Francis, London, pp 29–36 Sturzenegger M, Yan M, Stead D, Elmo D (2007) Applications and limitations of ground-based laser scanning in rock slope characterization. In: Eberhardt E, Stead D, Morrison T (eds) Proceedings of the first Canadian US rock mechanics symposium, vol 1. Taylor and Francis, London, pp 29–36
Zurück zum Zitat Terzaghi RD (1965) Source of error in joint surveys. Geotechnique 15:287–304CrossRef Terzaghi RD (1965) Source of error in joint surveys. Geotechnique 15:287–304CrossRef
Zurück zum Zitat Tonon F, Kottensette JT (2006) Laser and photogrammetric methods for rock face characterization: a workshop. In: Tonon F, Kottenstette J (eds) Laser and photogrammetric methods for rock face characterization. Golden, Colorado Tonon F, Kottensette JT (2006) Laser and photogrammetric methods for rock face characterization: a workshop. In: Tonon F, Kottenstette J (eds) Laser and photogrammetric methods for rock face characterization. Golden, Colorado
Zurück zum Zitat Trinks I et al (2005) Mapping and analysing virtual outcrops. Vis Geosci 1–7 Trinks I et al (2005) Mapping and analysing virtual outcrops. Vis Geosci 1–7
Zurück zum Zitat Turner AK, Kemeny J, Slob S, Hack R (2006) Evaluation, and management of unstable rock slopes by 3-D laser scanning. International Association for Engineering Geology and the Environment. The Geological Society of London, pp 1–11 Turner AK, Kemeny J, Slob S, Hack R (2006) Evaluation, and management of unstable rock slopes by 3-D laser scanning. International Association for Engineering Geology and the Environment. The Geological Society of London, pp 1–11
Zurück zum Zitat Zinber T, Schmidt J, Niemann H (2003) A refined ICP algorithm for robust 3-D correspondence estimation. IEEE Xplore 11:695–698 Zinber T, Schmidt J, Niemann H (2003) A refined ICP algorithm for robust 3-D correspondence estimation. IEEE Xplore 11:695–698
Metadaten
Titel
Bias Correction for View-limited Lidar Scanning of Rock Outcrops for Structural Characterization
verfasst von
Matthew J. Lato
Mark S. Diederichs
D. Jean Hutchinson
Publikationsdatum
01.09.2010
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 5/2010
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-010-0086-5

Weitere Artikel der Ausgabe 5/2010

Rock Mechanics and Rock Engineering 5/2010 Zur Ausgabe