Skip to main content
Erschienen in: Optical and Quantum Electronics 3/2024

01.03.2024

Bifurcation analysis and new exact complex solutions for the nonlinear Schrödinger equations with cubic nonlinearity

verfasst von: Md Nur Alam, Onur Alp İlhan, Hemel Sharker Akash, Imran Talib

Erschienen in: Optical and Quantum Electronics | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nonlinear Schrödinger equations with cubic nonlinearity are a model of wave propagation in fiber optics and have numerous nonlinear effects in four-wave mixing, ultrashort pulses, second-harmonic generation, self-phase modulation, stimulated raman scattering, etc. In this study, we apply the modified \((G'/G)\)-expansion scheme to the Nonlinear Schrödinger equations with cubic nonlinearity in order to obtain numerous new exact complex wave solutions and their Bifurcation analyses. Despite the fact that numerous new exact complex wave solutions and bifurcation analyses had previously been determined for Nonlinear Schrödinger equations with cubic nonlinearity by a number of researchers, this study yielded not only more precise wave solutions but also new exact complex wave solutions and their Bifurcation analyses.Wave propagation in soliton physics, modulus instability in plasma physics, and soliton propagation in optical fibers may be better understood with the acquired information. To examine the nonlinear effects of the Nonlinear Schrödinger equations with cubic nonlinearity, 2D, 3D, contour, and BA diagrams are created. The Hamiltonian function is established to further the analysis of the phase plane’s dynamics. The simulations were conducted using Python and MAPLE software tools. Therefore, the modified \((G'/G)\)-expansion scheme solution procedure is more straightforward than other conventional methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ablowitz, M., Segur, D.H.: Solitons and the Inverse Scattering Transform. Siam, Philadelphia (1981)CrossRef Ablowitz, M., Segur, D.H.: Solitons and the Inverse Scattering Transform. Siam, Philadelphia (1981)CrossRef
Zurück zum Zitat Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)MathSciNetCrossRef Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)MathSciNetCrossRef
Zurück zum Zitat Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and continuous nonlinear Schrödinger systems. Bull. New Ser. Am. Math. Soc. 43(1), 127–132 (2005)CrossRef Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and continuous nonlinear Schrödinger systems. Bull. New Ser. Am. Math. Soc. 43(1), 127–132 (2005)CrossRef
Zurück zum Zitat Achab, A.E.: Constructing of exact solutions to the nonlinear Schröodinger equation (NLSE) with power-law nonlinearity by the Weierstrass elliptic function method. Optik 127(3), 1229–1232 (2016)ADSCrossRef Achab, A.E.: Constructing of exact solutions to the nonlinear Schröodinger equation (NLSE) with power-law nonlinearity by the Weierstrass elliptic function method. Optik 127(3), 1229–1232 (2016)ADSCrossRef
Zurück zum Zitat Akram, S., Ahmad, J., Rehman, S.U., Alkarni, S., Shah, N.A.: Analysis of lump solutions and modulation instability to fractional complex Ginzburg–Landau equation arise in optical fibers. Res. Phys. 53, 106991 (2023) Akram, S., Ahmad, J., Rehman, S.U., Alkarni, S., Shah, N.A.: Analysis of lump solutions and modulation instability to fractional complex Ginzburg–Landau equation arise in optical fibers. Res. Phys. 53, 106991 (2023)
Zurück zum Zitat Alam, M.N.: Exact solutions to the foam drainage equation by using the new generalized \(G^{\prime }/G\)-expansion method. Res. Phys. 5, 168–177 (2015) Alam, M.N.: Exact solutions to the foam drainage equation by using the new generalized \(G^{\prime }/G\)-expansion method. Res. Phys. 5, 168–177 (2015)
Zurück zum Zitat Alam, M.N.: Soliton solutions to the electric signals in telegraph lines on the basis of the tunnel diode. Partial Differ. Equ. Appl. Math. 7, 100491 (2023)CrossRef Alam, M.N.: Soliton solutions to the electric signals in telegraph lines on the basis of the tunnel diode. Partial Differ. Equ. Appl. Math. 7, 100491 (2023)CrossRef
Zurück zum Zitat Alam, M.N.: An analytical technique to obtain traveling wave solutions to nonlinear models of fractional order. Partial Differ. Equ. Appl. Math. 8, 100533 (2023)CrossRef Alam, M.N.: An analytical technique to obtain traveling wave solutions to nonlinear models of fractional order. Partial Differ. Equ. Appl. Math. 8, 100533 (2023)CrossRef
Zurück zum Zitat Alam, M.N., Alam, M.M.: An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules. J. Taibah Univ. Sci. 11(6), 939–948 (2017)CrossRef Alam, M.N., Alam, M.M.: An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules. J. Taibah Univ. Sci. 11(6), 939–948 (2017)CrossRef
Zurück zum Zitat Alam, M.N., Belgacem, F.B.M.: Microtubules nonlinear models dynamics investigations through the \(exp(-\phi (\xi ))\)-expansion method implementation. Mathematics 4(1), 6 (2016)MathSciNetCrossRef Alam, M.N., Belgacem, F.B.M.: Microtubules nonlinear models dynamics investigations through the \(exp(-\phi (\xi ))\)-expansion method implementation. Mathematics 4(1), 6 (2016)MathSciNetCrossRef
Zurück zum Zitat Alam, M.N., Tunc, C.: An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator-prey system. Alex. Eng. J. 55(2), 1855–1865 (2016)CrossRef Alam, M.N., Tunc, C.: An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator-prey system. Alex. Eng. J. 55(2), 1855–1865 (2016)CrossRef
Zurück zum Zitat Alam, M.N., Akbar, M.A., Mohyud-Din, S.T.: A novel \((G^{\prime }/G)\)-expansion method and its application to the Boussinesq equation. Chin. Phys. B 23(2), 020203–020210 (2014)CrossRef Alam, M.N., Akbar, M.A., Mohyud-Din, S.T.: A novel \((G^{\prime }/G)\)-expansion method and its application to the Boussinesq equation. Chin. Phys. B 23(2), 020203–020210 (2014)CrossRef
Zurück zum Zitat Alam, M.N., Talib, I., Tunc, C.: The new soliton configurations of the 3D fractional model in arising shallow water waves. Int. J. Appl. Comput. Math. 9, 75 (2023)MathSciNetCrossRef Alam, M.N., Talib, I., Tunc, C.: The new soliton configurations of the 3D fractional model in arising shallow water waves. Int. J. Appl. Comput. Math. 9, 75 (2023)MathSciNetCrossRef
Zurück zum Zitat Ali, A., Ahmad, J., Javed, S., Rehman, S.U.: Exact soliton solutions and stability analysis to (3 + 1)-dimensional nonlinear Schrödinger model. Alex. Eng. J. 76, 747–756 (2023)CrossRef Ali, A., Ahmad, J., Javed, S., Rehman, S.U.: Exact soliton solutions and stability analysis to (3 + 1)-dimensional nonlinear Schrödinger model. Alex. Eng. J. 76, 747–756 (2023)CrossRef
Zurück zum Zitat Baskonus, H.M., Bulut, H.: Exponential prototype structure for \((2+1)\)-dimensional Boiti–Leon–Pempinelli systems in mathematical physics. Waves Random Complex Media 26(2), 189–196 (2016)ADSMathSciNetCrossRef Baskonus, H.M., Bulut, H.: Exponential prototype structure for \((2+1)\)-dimensional Boiti–Leon–Pempinelli systems in mathematical physics. Waves Random Complex Media 26(2), 189–196 (2016)ADSMathSciNetCrossRef
Zurück zum Zitat Bilal, M., Ren, J.: Dynamics of exact solitary wave solutions to the conformable time-space fractional model with reliable analytical approaches. Opt. Quant. Electron. 54, 40 (2022)CrossRef Bilal, M., Ren, J.: Dynamics of exact solitary wave solutions to the conformable time-space fractional model with reliable analytical approaches. Opt. Quant. Electron. 54, 40 (2022)CrossRef
Zurück zum Zitat Bilal, M., Younas, U., Ren, J.: Propagation of diverse solitary wave structures to the dynamical soliton model in mathematical physics. Opt. Quant. Electron. 53, 522 (2021a)CrossRef Bilal, M., Younas, U., Ren, J.: Propagation of diverse solitary wave structures to the dynamical soliton model in mathematical physics. Opt. Quant. Electron. 53, 522 (2021a)CrossRef
Zurück zum Zitat Bilal, M., Hu, W., Ren, J.: Different wave structures to the Chen–Lee–Liu equation of monomode fibers and its modulation instability analysis. Eur. Phys. J. Plus 136, 385 (2021b)CrossRef Bilal, M., Hu, W., Ren, J.: Different wave structures to the Chen–Lee–Liu equation of monomode fibers and its modulation instability analysis. Eur. Phys. J. Plus 136, 385 (2021b)CrossRef
Zurück zum Zitat Bilal, M., Ren, J., Younas, U.: Stability analysis and optical soliton solutions to the nonlinear Schrödinger model with efficient computational techniques. Opt. Quant. Electron. 53, 406 (2021c)CrossRef Bilal, M., Ren, J., Younas, U.: Stability analysis and optical soliton solutions to the nonlinear Schrödinger model with efficient computational techniques. Opt. Quant. Electron. 53, 406 (2021c)CrossRef
Zurück zum Zitat Bilal, M., Younas, U., Ren, J.: Dynamics of exact soliton solutions to the coupled nonlinear system using reliable analytical mathematical approaches. Commun. Theor. Phys. 73, 085005 (2021d)ADSMathSciNetCrossRef Bilal, M., Younas, U., Ren, J.: Dynamics of exact soliton solutions to the coupled nonlinear system using reliable analytical mathematical approaches. Commun. Theor. Phys. 73, 085005 (2021d)ADSMathSciNetCrossRef
Zurück zum Zitat Bilal, M., Haris, H., Waheed, A., Faheem, M.: The analysis of exact solitons solutions in monomode optical fibers to the generalized nonlinear Schrödinger system by compatible techniques. Int. J. Math. Comput. Eng. 1(2), 149–170 (2023a)CrossRef Bilal, M., Haris, H., Waheed, A., Faheem, M.: The analysis of exact solitons solutions in monomode optical fibers to the generalized nonlinear Schrödinger system by compatible techniques. Int. J. Math. Comput. Eng. 1(2), 149–170 (2023a)CrossRef
Zurück zum Zitat Bilal, M., Ren, J., Inc, M., Alqahtani, R.T.: Dynamics of solitons and weakly ion-acoustic wave structures to the nonlinear dynamical model via analytical techniques. Opt. Quant. Electron. 55, 656 (2023b)CrossRef Bilal, M., Ren, J., Inc, M., Alqahtani, R.T.: Dynamics of solitons and weakly ion-acoustic wave structures to the nonlinear dynamical model via analytical techniques. Opt. Quant. Electron. 55, 656 (2023b)CrossRef
Zurück zum Zitat Bilal, M., Ren, J., Inc, M., Alhefthi, R.K.: Optical soliton and other solutions to the nonlinear dynamical system via two efficient analytical mathematical schemes. Opt. Quant. Electron. 55, 938 (2023c)CrossRef Bilal, M., Ren, J., Inc, M., Alhefthi, R.K.: Optical soliton and other solutions to the nonlinear dynamical system via two efficient analytical mathematical schemes. Opt. Quant. Electron. 55, 938 (2023c)CrossRef
Zurück zum Zitat Biswas, A., Konar, S.: Introduction to Non-Kerr Law Optical Solitons. CRC Press, Boca Raton (2006)CrossRef Biswas, A., Konar, S.: Introduction to Non-Kerr Law Optical Solitons. CRC Press, Boca Raton (2006)CrossRef
Zurück zum Zitat Bulut, H., Sulaiman, T.A., Baskonus, H.M.: On the new soliton and optical wave structures to some nonlinear evolution equations. Eur. Phys. J. Plus 132, 459 (2017)CrossRef Bulut, H., Sulaiman, T.A., Baskonus, H.M.: On the new soliton and optical wave structures to some nonlinear evolution equations. Eur. Phys. J. Plus 132, 459 (2017)CrossRef
Zurück zum Zitat Bulut, H., Sulaiman, T.A., Baskonus, H.M., Akturk, T.: Complex acoustic gravity wave behaviors to some mathematical models arising in fluid dynamics and nonlinear dispersive media. Opt. Quant. Electron. 50, 19 (2018)CrossRef Bulut, H., Sulaiman, T.A., Baskonus, H.M., Akturk, T.: Complex acoustic gravity wave behaviors to some mathematical models arising in fluid dynamics and nonlinear dispersive media. Opt. Quant. Electron. 50, 19 (2018)CrossRef
Zurück zum Zitat Carter, J.D., Deconinck, B.: Instabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrödinger equation. Phys. D 214(1), 42–54 (2006)MathSciNetCrossRef Carter, J.D., Deconinck, B.: Instabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrödinger equation. Phys. D 214(1), 42–54 (2006)MathSciNetCrossRef
Zurück zum Zitat Drazin, P.G., Johnson, R.S.: Solitions: An Introduction. Cambridge University Press, New York (1993) Drazin, P.G., Johnson, R.S.: Solitions: An Introduction. Cambridge University Press, New York (1993)
Zurück zum Zitat Engui, F.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277(4–5), 212–218 (2000)MathSciNet Engui, F.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277(4–5), 212–218 (2000)MathSciNet
Zurück zum Zitat Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University Press, New York (1995)CrossRef Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University Press, New York (1995)CrossRef
Zurück zum Zitat Hirota, R.: Direct Methods in Soliton Theory. Springer, Berlin (1980)CrossRef Hirota, R.: Direct Methods in Soliton Theory. Springer, Berlin (1980)CrossRef
Zurück zum Zitat Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Shah, N.A., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Res. Phys. 49, 106520 (2023) Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Shah, N.A., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Res. Phys. 49, 106520 (2023)
Zurück zum Zitat Kalaawy, O.H.E., Ibrahim, R.S.: Solitary wave solution of the two-dimensional regularized long wave and Davey–Stewartson equations in fluids and plasmas. Appl. Math. 3(8), 833–843 (2012)CrossRef Kalaawy, O.H.E., Ibrahim, R.S.: Solitary wave solution of the two-dimensional regularized long wave and Davey–Stewartson equations in fluids and plasmas. Appl. Math. 3(8), 833–843 (2012)CrossRef
Zurück zum Zitat Kaup, D., Malomed, B.: Soliton trapping and daughter waves in the Manakov model. Phys. Rev. A 48, 599–604 (1993)ADSPubMedCrossRef Kaup, D., Malomed, B.: Soliton trapping and daughter waves in the Manakov model. Phys. Rev. A 48, 599–604 (1993)ADSPubMedCrossRef
Zurück zum Zitat Kaya, D., Sayed, S.M.E.: On the solution of the couples Schrödinger–KdV equation by the decomposition method. Phys. Lett. A 313(1–2), 82–88 (2003)ADSMathSciNetCrossRef Kaya, D., Sayed, S.M.E.: On the solution of the couples Schrödinger–KdV equation by the decomposition method. Phys. Lett. A 313(1–2), 82–88 (2003)ADSMathSciNetCrossRef
Zurück zum Zitat Lax, P.D.: periodic solutions of the Korteweg–de Vries equation. Commun. Pure Appl. Math. 28(1), 141–188 (1975)CrossRef Lax, P.D.: periodic solutions of the Korteweg–de Vries equation. Commun. Pure Appl. Math. 28(1), 141–188 (1975)CrossRef
Zurück zum Zitat Liu, D.: Jacobi elliptic function solutions for two variant Boussinesq equations. Chaos Solitons Fractals 24(5), 1373–1385 (2005)ADSMathSciNetCrossRef Liu, D.: Jacobi elliptic function solutions for two variant Boussinesq equations. Chaos Solitons Fractals 24(5), 1373–1385 (2005)ADSMathSciNetCrossRef
Zurück zum Zitat Ma, X., Pan, Y., Chang, L.: Explicit travelling wave solutions in a magneto-electro-elastic circular rod. Int. J. Comput. Sci. 10(1), 62–68 (2013) Ma, X., Pan, Y., Chang, L.: Explicit travelling wave solutions in a magneto-electro-elastic circular rod. Int. J. Comput. Sci. 10(1), 62–68 (2013)
Zurück zum Zitat Manakov, S.V.: Remarks on the integrals of the scale methods to the study of optical fiber Euler equations of the n-dimensional heavy top transmission. Funct. Anal. Appl. 10, 93–94 (1976) Manakov, S.V.: Remarks on the integrals of the scale methods to the study of optical fiber Euler equations of the n-dimensional heavy top transmission. Funct. Anal. Appl. 10, 93–94 (1976)
Zurück zum Zitat Mathanaranjan, T.: Optical solitons and stability analysis for the new (3+1)(3+1)-dimensional nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater. 32, 2350016 (2023)ADSCrossRef Mathanaranjan, T.: Optical solitons and stability analysis for the new (3+1)(3+1)-dimensional nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater. 32, 2350016 (2023)ADSCrossRef
Zurück zum Zitat Mathanaranjan, T.: New Jacobi elliptic solutions and other solutions in Ootical metamaterials having higher-order dispersion and its stability analysis. Int. J. Appl. Comput. Math 9, 66 (2023)MathSciNetCrossRef Mathanaranjan, T.: New Jacobi elliptic solutions and other solutions in Ootical metamaterials having higher-order dispersion and its stability analysis. Int. J. Appl. Comput. Math 9, 66 (2023)MathSciNetCrossRef
Zurück zum Zitat Mathanaranjan, T.: Optical soliton, linear stability analysis and conservation laws via multipliers to the integrable Kuralay equation. Optik 290, 171266 (2023)ADSCrossRef Mathanaranjan, T.: Optical soliton, linear stability analysis and conservation laws via multipliers to the integrable Kuralay equation. Optik 290, 171266 (2023)ADSCrossRef
Zurück zum Zitat Mathanaranjan, T., Vijayakumar, D.: New soliton solutions in nano-fibers with space-time fractional derivatives. Fractals 30, 2250141 (2022)ADSCrossRef Mathanaranjan, T., Vijayakumar, D.: New soliton solutions in nano-fibers with space-time fractional derivatives. Fractals 30, 2250141 (2022)ADSCrossRef
Zurück zum Zitat Mathanaranjan, T., Kumar, D., Rezazadeh, H., Akinyemi, L.: Optical solitons in metamaterials with third and fourth order dispersions. Opt. Quant. Electron. 54, 271 (2022)CrossRef Mathanaranjan, T., Kumar, D., Rezazadeh, H., Akinyemi, L.: Optical solitons in metamaterials with third and fourth order dispersions. Opt. Quant. Electron. 54, 271 (2022)CrossRef
Zurück zum Zitat Mathanaranjan, T., Hashemi, M.S., Rezazadeh, H., Akinyemi, L., Bekir, A.: Chirped optical solitons and stability analysis of the nonlinear Schrödinger equation with nonlinear chromatic dispersion. Commun. Theor. Phys. 75, 085005 (2023)ADSCrossRef Mathanaranjan, T., Hashemi, M.S., Rezazadeh, H., Akinyemi, L., Bekir, A.: Chirped optical solitons and stability analysis of the nonlinear Schrödinger equation with nonlinear chromatic dispersion. Commun. Theor. Phys. 75, 085005 (2023)ADSCrossRef
Zurück zum Zitat Menyuk, C.: Application of multiple-length-scale methods to the study of optical fiber transmission. J. Eng. Math. 36(1–2), 113–136 (1999)MathSciNetCrossRef Menyuk, C.: Application of multiple-length-scale methods to the study of optical fiber transmission. J. Eng. Math. 36(1–2), 113–136 (1999)MathSciNetCrossRef
Zurück zum Zitat Nasreen, N., Younas, U., Lu, D., Zhang, Z., Rezazadeh, H., Hosseinzadeh, M.A.: Propagation of solitary and periodic waves to conformable ion sound and Langmuir waves dynamical system. Opt. Quant. Electron. 55, 868 (2023a)CrossRef Nasreen, N., Younas, U., Lu, D., Zhang, Z., Rezazadeh, H., Hosseinzadeh, M.A.: Propagation of solitary and periodic waves to conformable ion sound and Langmuir waves dynamical system. Opt. Quant. Electron. 55, 868 (2023a)CrossRef
Zurück zum Zitat Nasreen, N., Younas, U., Sulaiman, T.A., Zhang, Z., Lu, D.: A variety of M-truncated optical solitons to a nonlinear extended classical dynamical model. Res. Phys. 51, 106722 (2023b) Nasreen, N., Younas, U., Sulaiman, T.A., Zhang, Z., Lu, D.: A variety of M-truncated optical solitons to a nonlinear extended classical dynamical model. Res. Phys. 51, 106722 (2023b)
Zurück zum Zitat Ozis, T., Yildirim, A.: Reliable analysis for obtaining exact soliton solutions of nonlinear Schrödinger (NLS) equation. Chaos Solitons Fractals 38(1), 209–212 (2008)ADSMathSciNetCrossRef Ozis, T., Yildirim, A.: Reliable analysis for obtaining exact soliton solutions of nonlinear Schrödinger (NLS) equation. Chaos Solitons Fractals 38(1), 209–212 (2008)ADSMathSciNetCrossRef
Zurück zum Zitat Rehman, S.U., Ahmad, J.: Diverse optical solitons to nonlinear perturbed Schrödinger equation with quadratic-cubic nonlinearity via two efficient approaches. Phys. Scr. 98, 035216 (2023)ADSCrossRef Rehman, S.U., Ahmad, J.: Diverse optical solitons to nonlinear perturbed Schrödinger equation with quadratic-cubic nonlinearity via two efficient approaches. Phys. Scr. 98, 035216 (2023)ADSCrossRef
Zurück zum Zitat Rehman, S.U., Bilal, M., Ahmad, J.: Highly dispersive optical and other soliton solutions to fiber Bragg gratings with the application of different mechanisms. Int. J. Mod. Phys. B 36, 2250193 (2022)ADSCrossRef Rehman, S.U., Bilal, M., Ahmad, J.: Highly dispersive optical and other soliton solutions to fiber Bragg gratings with the application of different mechanisms. Int. J. Mod. Phys. B 36, 2250193 (2022)ADSCrossRef
Zurück zum Zitat Rehman, S.U., Bilal, M., Inc, M., Younas, U., Rezazadeh, H., Younis, M., Alizamini, S.M.M.: Investigation of pure-cubic optical solitons in nonlinear optics. Opt. Quant. Electron. 54, 400 (2022)CrossRef Rehman, S.U., Bilal, M., Inc, M., Younas, U., Rezazadeh, H., Younis, M., Alizamini, S.M.M.: Investigation of pure-cubic optical solitons in nonlinear optics. Opt. Quant. Electron. 54, 400 (2022)CrossRef
Zurück zum Zitat Rehman, S.U., Ahmad, J., Muhammad, T.: Dynamics of novel exact soliton solutions to Stochastic Chiral Nonlinear Schrödinger Equation. Alex. Eng. J. 79, 568–580 (2023)CrossRef Rehman, S.U., Ahmad, J., Muhammad, T.: Dynamics of novel exact soliton solutions to Stochastic Chiral Nonlinear Schrödinger Equation. Alex. Eng. J. 79, 568–580 (2023)CrossRef
Zurück zum Zitat Seadawy, A.R., Lu, D.C., Arshad, M.: Stability analysis of solitary wave solutions for coupled and \((2+1)\)-dimensional cubic Klein–Gordon equations and their applications. Commun. Theor. Phys. 69(6), 676–686 (2018)ADSMathSciNetCrossRef Seadawy, A.R., Lu, D.C., Arshad, M.: Stability analysis of solitary wave solutions for coupled and \((2+1)\)-dimensional cubic Klein–Gordon equations and their applications. Commun. Theor. Phys. 69(6), 676–686 (2018)ADSMathSciNetCrossRef
Zurück zum Zitat Serna, J.M.S.: Conservative and nonconservative schemes for the solution of non-linear Schrödinger equation. IMA J. Numer. Anal. 6(1), 25–42 (1986)MathSciNetCrossRef Serna, J.M.S.: Conservative and nonconservative schemes for the solution of non-linear Schrödinger equation. IMA J. Numer. Anal. 6(1), 25–42 (1986)MathSciNetCrossRef
Zurück zum Zitat Shakeel, M., Iqbal, M.A., Mohyud-Din, S.T.: Closed form solutions for nonlinear biological population model. Math. Comput. Model. 26(1), 207–223 (2018)MathSciNet Shakeel, M., Iqbal, M.A., Mohyud-Din, S.T.: Closed form solutions for nonlinear biological population model. Math. Comput. Model. 26(1), 207–223 (2018)MathSciNet
Zurück zum Zitat Shakeel, M., Mohyud-Din, S.T., Iqbal, M.A.: Modified extended exp-function method for system of nonlinear partial differential equations defined by seismic sea waves. Pramana J. Phys. 91(2), 28 (2018)ADSCrossRef Shakeel, M., Mohyud-Din, S.T., Iqbal, M.A.: Modified extended exp-function method for system of nonlinear partial differential equations defined by seismic sea waves. Pramana J. Phys. 91(2), 28 (2018)ADSCrossRef
Zurück zum Zitat Sweilam, N.H.: Variational iteration method for solving cubic nonlinear Schrödinger equation. J. Comput. Appl. Math. 207(1), 155–163 (2007)ADSMathSciNetCrossRef Sweilam, N.H.: Variational iteration method for solving cubic nonlinear Schrödinger equation. J. Comput. Appl. Math. 207(1), 155–163 (2007)ADSMathSciNetCrossRef
Zurück zum Zitat Tariq, K.U., Seadawyd, A.: Soliton solutions for \((2+1)\) and \((3+1)\)-dimensional Kadomtsev Petviashvili–Benjamin–Bona–Mahony model equations and their applications. Filomat 32(2), 531–542 (2018)MathSciNetCrossRef Tariq, K.U., Seadawyd, A.: Soliton solutions for \((2+1)\) and \((3+1)\)-dimensional Kadomtsev Petviashvili–Benjamin–Bona–Mahony model equations and their applications. Filomat 32(2), 531–542 (2018)MathSciNetCrossRef
Zurück zum Zitat Wang, M.L., Zhang, J.L., Li, X.Z.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)ADSMathSciNetCrossRef Wang, M.L., Zhang, J.L., Li, X.Z.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)ADSMathSciNetCrossRef
Zurück zum Zitat Wazwaz, A.M.: Partial Differential Equations: Method and Applications. Taylor and Francis, London (2002) Wazwaz, A.M.: Partial Differential Equations: Method and Applications. Taylor and Francis, London (2002)
Zurück zum Zitat Wazwaz, A.M.: A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 40(5–6), 499–508 (2004)MathSciNetCrossRef Wazwaz, A.M.: A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 40(5–6), 499–508 (2004)MathSciNetCrossRef
Zurück zum Zitat Wazwaz, A.M.: Reliable analysis for nonlinear Schrödinger equations with a cubic nonlinearity and power law nonlinearity. Math. Comput. Model. 43(1–2), 178–184 (2006)MathSciNetCrossRef Wazwaz, A.M.: Reliable analysis for nonlinear Schrödinger equations with a cubic nonlinearity and power law nonlinearity. Math. Comput. Model. 43(1–2), 178–184 (2006)MathSciNetCrossRef
Zurück zum Zitat Yan, Z.: Generalized method and its application in the higher order Schröodinger equation in nonlinear optical fibers. Chaos Solitons Fractals 16(5), 759–766 (2003)ADSMathSciNetCrossRef Yan, Z.: Generalized method and its application in the higher order Schröodinger equation in nonlinear optical fibers. Chaos Solitons Fractals 16(5), 759–766 (2003)ADSMathSciNetCrossRef
Zurück zum Zitat Younas, U., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Althobaiti, S.: Diverse wave propagation in shallow water waves with the Kadomtsev–Petviashvili–Benjamin–Bona–Mahony and Benney-Luke integrable models. Open Phys. 19, 808–818 (2021)CrossRef Younas, U., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Althobaiti, S.: Diverse wave propagation in shallow water waves with the Kadomtsev–Petviashvili–Benjamin–Bona–Mahony and Benney-Luke integrable models. Open Phys. 19, 808–818 (2021)CrossRef
Zurück zum Zitat Younas, U., Sulaiman, T.A., Ismael, H.F., Shah, N.A., Eldin, S.M.: On the lump interaction phenomena to the conformable fractional (2+1)-dimensional KdV equation. Res. Phys. 52, 106863 (2023) Younas, U., Sulaiman, T.A., Ismael, H.F., Shah, N.A., Eldin, S.M.: On the lump interaction phenomena to the conformable fractional (2+1)-dimensional KdV equation. Res. Phys. 52, 106863 (2023)
Zurück zum Zitat Younas, U., Baber, M.Z., Yasin, M.W., Sulaiman, T.A., Ren, J.: The generalized higher-order nonlinear Schrödinger equation: optical solitons and other solutions in fiber optics. Int. J. Mod. Phys. B 37, 2350174 (2023)ADSCrossRef Younas, U., Baber, M.Z., Yasin, M.W., Sulaiman, T.A., Ren, J.: The generalized higher-order nonlinear Schrödinger equation: optical solitons and other solutions in fiber optics. Int. J. Mod. Phys. B 37, 2350174 (2023)ADSCrossRef
Zurück zum Zitat Zhang, H.: New exact complex travelling wave solutions to nonlinear Schrödinger (NLS) equation. Commun. Nonlinear Sci. Numer. Simul. 14(3), 668–673 (2009)ADSMathSciNetCrossRef Zhang, H.: New exact complex travelling wave solutions to nonlinear Schrödinger (NLS) equation. Commun. Nonlinear Sci. Numer. Simul. 14(3), 668–673 (2009)ADSMathSciNetCrossRef
Zurück zum Zitat Zhang, J., Wei, X., Lu, Y.: A generalized \((G^{\prime }/G)\)-expansion method and its applications. Phys. Lett. A 372(20), 3653–3658 (2008)ADSMathSciNetCrossRef Zhang, J., Wei, X., Lu, Y.: A generalized \((G^{\prime }/G)\)-expansion method and its applications. Phys. Lett. A 372(20), 3653–3658 (2008)ADSMathSciNetCrossRef
Zurück zum Zitat Zhang, J., Jiang, F., Zhao, X.: An improved \((G^{\prime }/G)\)-expansion method for solving nonlinear evolution equations. Int. J. Comput. Math. 87(8), 1716–1725 (2010)MathSciNetCrossRef Zhang, J., Jiang, F., Zhao, X.: An improved \((G^{\prime }/G)\)-expansion method for solving nonlinear evolution equations. Int. J. Comput. Math. 87(8), 1716–1725 (2010)MathSciNetCrossRef
Zurück zum Zitat Zhao, Y.H., Mathanaranjan, T., Rezazadeh, H., Akinyemi, L., Inc, M.: New solitary wave solutions and stability analysis for the generalized (3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Res. Phys. 3, 106083 (2022) Zhao, Y.H., Mathanaranjan, T., Rezazadeh, H., Akinyemi, L., Inc, M.: New solitary wave solutions and stability analysis for the generalized (3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Res. Phys. 3, 106083 (2022)
Metadaten
Titel
Bifurcation analysis and new exact complex solutions for the nonlinear Schrödinger equations with cubic nonlinearity
verfasst von
Md Nur Alam
Onur Alp İlhan
Hemel Sharker Akash
Imran Talib
Publikationsdatum
01.03.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 3/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05863-w

Weitere Artikel der Ausgabe 3/2024

Optical and Quantum Electronics 3/2024 Zur Ausgabe

Neuer Inhalt