Skip to main content

2020 | OriginalPaper | Buchkapitel

9. Big Data Software

verfasst von : Julián Luengo, Diego García-Gil, Sergio Ramírez-Gallego, Salvador García, Francisco Herrera

Erschienen in: Big Data Preprocessing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The advent of Big Data has created the necessity of new computing tools for processing huge amounts of data. Apache Hadoop was the first open-source framework that implemented the MapReduce paradigm. Apache Spark appeared a few years later improving the Hadoop Ecosystem. Similarly, Apache Flink appeared in the last years for tackling the Big Data streaming problem. However, as these frameworks were created for dealing with huge amounts of data, many practitioners will need machine learning algorithms for extracting the knowledge in the data. The success of a Big Data framework is going to be strongly related to its machine learning capability. This is the reason why nowadays these frameworks include a Big Data machine learning library, MLlib in the case of Spark, and FlinkML for Flink. In this chapter, we analyze in depth both MLlib and FlinkML Big Data libraries. We start with a description of Apache Spark MLlib and all of its components. We continue with a description of a Big Data library focused on data preprocessing for Apache Spark, named BigDaPSpark. Next, we provide an extensive analysis of FlinkML, and its included algorithms and utilities. Lastly, we finish with the description of a Big Data streaming library, focused on data preprocessing for Apache Flink, named BigDaPFlink.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys Tutorials, 17(4), 2347–2376.CrossRef Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys Tutorials, 17(4), 2347–2376.CrossRef
2.
Zurück zum Zitat Alcalde-Barros, A., García-Gil, D., García, S., & Herrera, F. (2019). DPASF: A Flink library for streaming data preprocessing. Big Data Analytics, 4(1), 4.CrossRef Alcalde-Barros, A., García-Gil, D., García, S., & Herrera, F. (2019). DPASF: A Flink library for streaming data preprocessing. Big Data Analytics, 4(1), 4.CrossRef
3.
Zurück zum Zitat Angiulli, F. (2007). Fast nearest neighbor condensation for large data sets classification. IEEE Transactions on Knowledge and Data Engineering, 19(11), 1450–1464.CrossRef Angiulli, F. (2007). Fast nearest neighbor condensation for large data sets classification. IEEE Transactions on Knowledge and Data Engineering, 19(11), 1450–1464.CrossRef
5.
Zurück zum Zitat Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., et al. (2015). Spark SQL: Relational data processing in spark. In ACM SIGMOD International Conference on Management of Data, SIGMOD ’15 (pp. 1383–1394). Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., et al. (2015). Spark SQL: Relational data processing in spark. In ACM SIGMOD International Conference on Management of Data, SIGMOD ’15 (pp. 1383–1394).
6.
Zurück zum Zitat Arnaiz-González, Á., González-Rogel, A., Díez-Pastor, J.-F., & López-Nozal, C. (2017). MR-DIS: democratic instance selection for big data by MapReduce. Progress in Artificial Intelligence, 6(3), 211–219.CrossRef Arnaiz-González, Á., González-Rogel, A., Díez-Pastor, J.-F., & López-Nozal, C. (2017). MR-DIS: democratic instance selection for big data by MapReduce. Progress in Artificial Intelligence, 6(3), 211–219.CrossRef
7.
Zurück zum Zitat Basgall, M. J., Hasperué, W., Naiouf, M., Fernández, A., & Herrera, F. (2018). SMOTE-BD: An exact and scalable oversampling method for imbalanced classification in big data. Journal of Computer Science and Technology, 18(03), e23.CrossRef Basgall, M. J., Hasperué, W., Naiouf, M., Fernández, A., & Herrera, F. (2018). SMOTE-BD: An exact and scalable oversampling method for imbalanced classification in big data. Journal of Computer Science and Technology, 18(03), e23.CrossRef
8.
Zurück zum Zitat Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations Newsletter, 6(1), 20–29.CrossRef Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations Newsletter, 6(1), 20–29.CrossRef
9.
Zurück zum Zitat Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1–2), 245–271.MathSciNetMATHCrossRef Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1–2), 245–271.MathSciNetMATHCrossRef
10.
Zurück zum Zitat Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., et al. (2013). API design for machine learning software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning (pp. 108–122). Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., et al. (2013). API design for machine learning software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning (pp. 108–122).
11.
Zurück zum Zitat Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.MATHCrossRef Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.MATHCrossRef
12.
Zurück zum Zitat Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165–1188.CrossRef Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165–1188.CrossRef
13.
Zurück zum Zitat Dean, J., & Ghemawat, S. (2010). MapReduce: A flexible data processing tool. Communications of the ACM, 53(1), 72–77.CrossRef Dean, J., & Ghemawat, S. (2010). MapReduce: A flexible data processing tool. Communications of the ACM, 53(1), 72–77.CrossRef
14.
Zurück zum Zitat Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. In IJCAI (pp. 1022–1029). Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. In IJCAI (pp. 1022–1029).
15.
Zurück zum Zitat Fernández, A., del Río, S., López, V., Bawakid, A., del Jesús, M. J., Benítez, J. M., et al. (2014). Big data with cloud computing: an insight on the computing environment, MapReduce, and programming frameworks. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(5), 380–409. Fernández, A., del Río, S., López, V., Bawakid, A., del Jesús, M. J., Benítez, J. M., et al. (2014). Big data with cloud computing: an insight on the computing environment, MapReduce, and programming frameworks. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(5), 380–409.
16.
Zurück zum Zitat Figueredo, G. P., Triguero, I., Mesgarpour, M., Guerra, A. M., Garibaldi, J. M., & John, R. I. (2017). An immune-inspired technique to identify heavy goods vehicles incident hot spots. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(4), 248–258.CrossRef Figueredo, G. P., Triguero, I., Mesgarpour, M., Guerra, A. M., Garibaldi, J. M., & John, R. I. (2017). An immune-inspired technique to identify heavy goods vehicles incident hot spots. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(4), 248–258.CrossRef
17.
Zurück zum Zitat Gama, J., & Pinto, C. (2006). Discretization from data streams: Applications to histograms and data mining. In Proceedings of the 2006 ACM Symposium on Applied Computing (pp. 662–667). New York: ACM.CrossRef Gama, J., & Pinto, C. (2006). Discretization from data streams: Applications to histograms and data mining. In Proceedings of the 2006 ACM Symposium on Applied Computing (pp. 662–667). New York: ACM.CrossRef
18.
Zurück zum Zitat García, S., Cano, J. R., & Herrera, F. (2008). A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recognition, 41(8), 2693–2709.MATHCrossRef García, S., Cano, J. R., & Herrera, F. (2008). A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recognition, 41(8), 2693–2709.MATHCrossRef
19.
Zurück zum Zitat García-Gil, D., Alcalde-Barros, A., Luengo, J., García, S., & Herrera, F. (2019). Big data preprocessing as the bridge between big data and smart data: BigDaPSpark and BigDaPFlink libraries. In Proceedings of the 4th International Conference on Internet of Things, Big Data and Security - Volume 1: IoTBDS (pp. 324–331). INSTICC, SciTePress. García-Gil, D., Alcalde-Barros, A., Luengo, J., García, S., & Herrera, F. (2019). Big data preprocessing as the bridge between big data and smart data: BigDaPSpark and BigDaPFlink libraries. In Proceedings of the 4th International Conference on Internet of Things, Big Data and Security - Volume 1: IoTBDS (pp. 324–331). INSTICC, SciTePress.
20.
Zurück zum Zitat García-Gil, D., Luengo, J., García, S., & Herrera, F. (2019). Enabling smart data: Noise filtering in big data classification. Information Sciences, 479, 135–152.CrossRef García-Gil, D., Luengo, J., García, S., & Herrera, F. (2019). Enabling smart data: Noise filtering in big data classification. Information Sciences, 479, 135–152.CrossRef
21.
Zurück zum Zitat García-Gil, D., Ramírez-Gallego, S., García, S., & Herrera, F. (2018). Principal components analysis random discretization ensemble for big data. Knowledge-Based Systems, 150, 166–174.CrossRef García-Gil, D., Ramírez-Gallego, S., García, S., & Herrera, F. (2018). Principal components analysis random discretization ensemble for big data. Knowledge-Based Systems, 150, 166–174.CrossRef
22.
Zurück zum Zitat Gupta, P., Sharma, A., & Jindal, R. (2016). Scalable machine learning algorithms for big data analytics: A comprehensive review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(6), 194–214. Gupta, P., Sharma, A., & Jindal, R. (2016). Scalable machine learning algorithms for big data analytics: A comprehensive review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(6), 194–214.
23.
Zurück zum Zitat Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (2006). Feature extraction: Foundations and applications (Studies in fuzziness and soft computing). New York: Springer.MATHCrossRef Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (2006). Feature extraction: Foundations and applications (Studies in fuzziness and soft computing). New York: Springer.MATHCrossRef
25.
Zurück zum Zitat Janssens, J., Huszár, F., Postma, E. O., & van den Herik, H. J. (2012). Stochastic outlier selection. Technical Report, Technical report TiCC TR 2012–001, Tilburg University. Janssens, J., Huszár, F., Postma, E. O., & van den Herik, H. J. (2012). Stochastic outlier selection. Technical Report, Technical report TiCC TR 2012–001, Tilburg University.
26.
Zurück zum Zitat Katakis, I., Tsoumakas, G., & Vlahavas, I. (2005). On the utility of incremental feature selection for the classification of textual data streams. In Panhellenic Conference on Informatics (pp. 338–348). Berlin: Springer. Katakis, I., Tsoumakas, G., & Vlahavas, I. (2005). On the utility of incremental feature selection for the classification of textual data streams. In Panhellenic Conference on Informatics (pp. 338–348). Berlin: Springer.
27.
Zurück zum Zitat Marx, V. (2013). Biology: The big challenges of big data. Nature, 498(7453), 255–260.CrossRef Marx, V. (2013). Biology: The big challenges of big data. Nature, 498(7453), 255–260.CrossRef
28.
Zurück zum Zitat Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., et al. (2016). Mllib: Machine learning in Apache spark. Journal of Machine Learning Research, 17(34), 1–7.MathSciNetMATH Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., et al. (2016). Mllib: Machine learning in Apache spark. Journal of Machine Learning Research, 17(34), 1–7.MathSciNetMATH
29.
Zurück zum Zitat Philip-Chen, C. L., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275(10), 314–347.CrossRef Philip-Chen, C. L., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275(10), 314–347.CrossRef
30.
Zurück zum Zitat Ramírez-Gallego, S., Fernández, A., García, S., Chen, M., & Herrera, F. (2018). Big data: Tutorial and guidelines on information and process fusion for analytics algorithms with MapReduce. Information Fusion, 42, 51–61.CrossRef Ramírez-Gallego, S., Fernández, A., García, S., Chen, M., & Herrera, F. (2018). Big data: Tutorial and guidelines on information and process fusion for analytics algorithms with MapReduce. Information Fusion, 42, 51–61.CrossRef
31.
Zurück zum Zitat Ramírez-Gallego, S., García, S., Benítez, J. M., & Herrera, F. (2018). A distributed evolutionary multivariate discretizer for big data processing on Apache spark. Swarm and Evolutionary Computation, 38, 240–250.CrossRef Ramírez-Gallego, S., García, S., Benítez, J. M., & Herrera, F. (2018). A distributed evolutionary multivariate discretizer for big data processing on Apache spark. Swarm and Evolutionary Computation, 38, 240–250.CrossRef
32.
Zurück zum Zitat Ramírez-Gallego, S., García, S., & Herrera, F. (2018). Online entropy-based discretization for data streaming classification. Future Generation Computer Systems, 86, 59–70.CrossRef Ramírez-Gallego, S., García, S., & Herrera, F. (2018). Online entropy-based discretization for data streaming classification. Future Generation Computer Systems, 86, 59–70.CrossRef
33.
Zurück zum Zitat Ramírez-Gallego, S., García, S., Mouriño-Talín, H., Martínez-Rego, D., Bolón-Canedo, V., Alonso-Betanzos, A., et al. (2016). Data discretization: Taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(1), 5–21. Ramírez-Gallego, S., García, S., Mouriño-Talín, H., Martínez-Rego, D., Bolón-Canedo, V., Alonso-Betanzos, A., et al. (2016). Data discretization: Taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(1), 5–21.
34.
Zurück zum Zitat Ramírez-Gallego, S., Mouriño-Talín, H., Martínez-Rego, D., Bolón-Canedo, V., Benítez, J. M., Alonso-Betanzos, A., et al. (2018). An information theory-based feature selection framework for big data under Apache spark. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(9), 1441–1453.CrossRef Ramírez-Gallego, S., Mouriño-Talín, H., Martínez-Rego, D., Bolón-Canedo, V., Benítez, J. M., Alonso-Betanzos, A., et al. (2018). An information theory-based feature selection framework for big data under Apache spark. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(9), 1441–1453.CrossRef
35.
Zurück zum Zitat Sánchez, J. S., Barandela, R., Marqués, A. I., Alejo, R., & Badenas, J. (2003). Analysis of new techniques to obtain quality training sets. Pattern Recognition Letters, 24(7), 1015–1022.CrossRef Sánchez, J. S., Barandela, R., Marqués, A. I., Alejo, R., & Badenas, J. (2003). Analysis of new techniques to obtain quality training sets. Pattern Recognition Letters, 24(7), 1015–1022.CrossRef
36.
Zurück zum Zitat Sánchez, J. S., Pla, F., & Ferri, F. J. (1997). Prototype selection for the nearest neighbour rule through proximity graphs. Pattern Recognition Letters, 18(6), 507–513.CrossRef Sánchez, J. S., Pla, F., & Ferri, F. J. (1997). Prototype selection for the nearest neighbour rule through proximity graphs. Pattern Recognition Letters, 18(6), 507–513.CrossRef
37.
Zurück zum Zitat Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., et al. (2014). Machine learning: The high interest credit card of technical debt. In SE4ML: Software Engineering for Machine Learning (NIPS 2014 Workshop). Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., et al. (2014). Machine learning: The high interest credit card of technical debt. In SE4ML: Software Engineering for Machine Learning (NIPS 2014 Workshop).
38.
Zurück zum Zitat Skalak, D. B. (1994). Prototype and feature selection by sampling and random mutation hill climbing algorithms. In Machine Learning Proceedings 1994 (pp. 293–301). Amsterdam: Elsevier.CrossRef Skalak, D. B. (1994). Prototype and feature selection by sampling and random mutation hill climbing algorithms. In Machine Learning Proceedings 1994 (pp. 293–301). Amsterdam: Elsevier.CrossRef
39.
Zurück zum Zitat Snir, M., & Otto, S. (1998). MPI-The complete reference: The MPI core. Cambridge, MA: MIT Press. Snir, M., & Otto, S. (1998). MPI-The complete reference: The MPI core. Cambridge, MA: MIT Press.
40.
Zurück zum Zitat Takane, Y., Young, F. W., & De Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42(1), 7–67.MATHCrossRef Takane, Y., Young, F. W., & De Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42(1), 7–67.MATHCrossRef
41.
Zurück zum Zitat Tomek, I. (1976). An experiment with the edited nearest-neighbor rule. IEEE Transactions on systems, Man, and Cybernetics, SMC-6(6), 448–452.MathSciNetMATHCrossRef Tomek, I. (1976). An experiment with the edited nearest-neighbor rule. IEEE Transactions on systems, Man, and Cybernetics, SMC-6(6), 448–452.MathSciNetMATHCrossRef
42.
Zurück zum Zitat Triguero, I., García, S., & Herrera, F. (2011). Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition, 44(4), 901–916.CrossRef Triguero, I., García, S., & Herrera, F. (2011). Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition, 44(4), 901–916.CrossRef
43.
Zurück zum Zitat Triguero, I., García-Gil, D., Maillo, J., Luengo, J., García, S., & Herrera, F. (2019). Transforming big data into smart data: An insight on the use of the k-nearest neighbors algorithm to obtain quality data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(2), e1289. Triguero, I., García-Gil, D., Maillo, J., Luengo, J., García, S., & Herrera, F. (2019). Transforming big data into smart data: An insight on the use of the k-nearest neighbors algorithm to obtain quality data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(2), e1289.
44.
Zurück zum Zitat Triguero, I., Peralta, D., Bacardit, J., García, S., & Herrera, F. (2015). MRPR: A MapReduce solution for prototype reduction in big data classification. Neurocomputing, 150, 331–345.CrossRef Triguero, I., Peralta, D., Bacardit, J., García, S., & Herrera, F. (2015). MRPR: A MapReduce solution for prototype reduction in big data classification. Neurocomputing, 150, 331–345.CrossRef
45.
Zurück zum Zitat Wang, J., Zhao, P., Hoi, S. C. H., & Jin, R. (2014). Online feature selection and its applications. IEEE Transactions on Knowledge and Data Engineering, 26(3), 698–710.CrossRef Wang, J., Zhao, P., Hoi, S. C. H., & Jin, R. (2014). Online feature selection and its applications. IEEE Transactions on Knowledge and Data Engineering, 26(3), 698–710.CrossRef
46.
Zurück zum Zitat Webb, G. I. (2014). Contrary to popular belief incremental discretization can be sound, computationally efficient and extremely useful for streaming data. In 2014 IEEE International Conference on Data Mining (pp. 1031–1036). Webb, G. I. (2014). Contrary to popular belief incremental discretization can be sound, computationally efficient and extremely useful for streaming data. In 2014 IEEE International Conference on Data Mining (pp. 1031–1036).
47.
Zurück zum Zitat White, T. (2012). Hadoop: The definitive guide (3rd ed.). Sebastopol, CA: O’Reilly Media. White, T. (2012). Hadoop: The definitive guide (3rd ed.). Sebastopol, CA: O’Reilly Media.
48.
Zurück zum Zitat Wilson, D. L. (1972) Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics, SMC-2(3), 408–421.MathSciNetMATHCrossRef Wilson, D. L. (1972) Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics, SMC-2(3), 408–421.MathSciNetMATHCrossRef
49.
Zurück zum Zitat Yu, L., & Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th International Conference on Machine Learning (ICML-03) (pp. 856–863). Yu, L., & Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th International Conference on Machine Learning (ICML-03) (pp. 856–863).
50.
Zurück zum Zitat Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., et al. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (pp. 1–14). Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., et al. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (pp. 1–14).
51.
Zurück zum Zitat Zhou, Y., Wilkinson, D., Schreiber, R., & Pan, R. (2008). Large-scale parallel collaborative filtering for the Netflix prize. In R. Fleischer & J. Xu (Eds.), Algorithmic aspects in information and management (pp. 337–348). Berlin/Heidelberg: Springer.CrossRef Zhou, Y., Wilkinson, D., Schreiber, R., & Pan, R. (2008). Large-scale parallel collaborative filtering for the Netflix prize. In R. Fleischer & J. Xu (Eds.), Algorithmic aspects in information and management (pp. 337–348). Berlin/Heidelberg: Springer.CrossRef
Metadaten
Titel
Big Data Software
verfasst von
Julián Luengo
Diego García-Gil
Sergio Ramírez-Gallego
Salvador García
Francisco Herrera
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-39105-8_9

Premium Partner