Skip to main content
Erschienen in: Neural Computing and Applications 7/2020

16.10.2018 | Original Article

Binary whale optimization algorithm and its application to unit commitment problem

verfasst von: Vijay Kumar, Dinesh Kumar

Erschienen in: Neural Computing and Applications | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Whale optimization algorithm is a novel metaheuristic algorithm that imitates the social behavior of humpback whales. In this algorithm, the bubble-net hunting strategy of humpback whales is exploited. However, this algorithm, in its present form, is appropriate for continuous problems. To make it applicable to discrete problems, a binary version of this algorithm is being proposed in this paper. In the proposed approach, the solutions are binarized and sigmoidal transfer function is utilized to update the position of whales. The performance of the proposed algorithm is evaluated on 29 benchmark functions. Furthermore, unpaired t test is carried out to illustrate its statistical significance. The experimental results depict that the proposed algorithm outperforms others in respect of benchmark test functions. The proposed approach is applied on electrical engineering problem, a real-life application, named as “unit commitment”. The proposed approach uses the priority list to handle spinning reserve constraints and search mechanism to handle minimum up/down time constraints. It is tested on standard IEEE systems consisting of 4, 10, 20, 40, 80, and 100 units and on IEEE 118-bus system and Taiwan 38-bus system as well. Experimental results reveal that the proposed approach is superior to other algorithms in terms of lower production cost.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Goldberg D (1989) Genetic algorithms in search, optimization, and machine. Addison-Wesley, BostonMATH Goldberg D (1989) Genetic algorithms in search, optimization, and machine. Addison-Wesley, BostonMATH
2.
Zurück zum Zitat Kennedy N, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, pp 1942–1948 Kennedy N, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, pp 1942–1948
3.
Zurück zum Zitat Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–35CrossRef Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–35CrossRef
4.
Zurück zum Zitat Yang X-S, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483CrossRef Yang X-S, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483CrossRef
5.
Zurück zum Zitat Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248MATHCrossRef Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248MATHCrossRef
6.
Zurück zum Zitat Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1:67–82CrossRef Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1:67–82CrossRef
7.
Zurück zum Zitat Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef
8.
Zurück zum Zitat Wang X, Yang J, Teng X, Xia W, Jensen R (2007) Feature selection based on rough sets and particle swarm optimization. Pattern Recognit Lett 28:459–471CrossRef Wang X, Yang J, Teng X, Xia W, Jensen R (2007) Feature selection based on rough sets and particle swarm optimization. Pattern Recognit Lett 28:459–471CrossRef
9.
Zurück zum Zitat Srinivasa KG, Venugopal KR, Patnaik LM (2007) A self-adaptive migration model genetic algorithm for data mining applications. Inf Sci 177(20):4295–4313MATHCrossRef Srinivasa KG, Venugopal KR, Patnaik LM (2007) A self-adaptive migration model genetic algorithm for data mining applications. Inf Sci 177(20):4295–4313MATHCrossRef
10.
Zurück zum Zitat Wu T-H, Chang C-C, Chung S-H (2008) A simulated annealing algorithm for manufacturing cell formation problems. Expert Syst Appl 34(3):1609–1617CrossRef Wu T-H, Chang C-C, Chung S-H (2008) A simulated annealing algorithm for manufacturing cell formation problems. Expert Syst Appl 34(3):1609–1617CrossRef
11.
Zurück zum Zitat Yuan X, Nie H, Su A, Wang L, Yuan Y (2009) An improved binary particle swarm optimization for unit commitment problem. Expert Syst Appl 36(4):8049–8055CrossRef Yuan X, Nie H, Su A, Wang L, Yuan Y (2009) An improved binary particle swarm optimization for unit commitment problem. Expert Syst Appl 36(4):8049–8055CrossRef
12.
Zurück zum Zitat Amiri M, Khanohamadi S (2013) A primary unit commitment approach with a modification process. Appl Soft Comput 13:1007–1015CrossRef Amiri M, Khanohamadi S (2013) A primary unit commitment approach with a modification process. Appl Soft Comput 13:1007–1015CrossRef
13.
Zurück zum Zitat Panwar LK, Reddy SK, Verma A, Panigrahi BK, Kumar R (2018) Binary grey wolf optimizer for large scale unit commitment problem. Swarm Evol Comput 38:251–266CrossRef Panwar LK, Reddy SK, Verma A, Panigrahi BK, Kumar R (2018) Binary grey wolf optimizer for large scale unit commitment problem. Swarm Evol Comput 38:251–266CrossRef
14.
Zurück zum Zitat Senjyu T, Shimabukuro K, Uezato K, Funabashi T (2003) A fast technique for unit commitment problem by extended priority list. IEEE Trans Power Syst 18(2):882–888CrossRef Senjyu T, Shimabukuro K, Uezato K, Funabashi T (2003) A fast technique for unit commitment problem by extended priority list. IEEE Trans Power Syst 18(2):882–888CrossRef
15.
Zurück zum Zitat Ongsakul W, Petcharaks N (2004) Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Trans Power Syst 19:620–628CrossRef Ongsakul W, Petcharaks N (2004) Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Trans Power Syst 19:620–628CrossRef
16.
Zurück zum Zitat Venkatesh B, Jamtsho T, Gooi HB (2007) Unit commitment—a fuzzy mixed integer linear programming solution. IET Gener Transm Distrib 1(5):836–846CrossRef Venkatesh B, Jamtsho T, Gooi HB (2007) Unit commitment—a fuzzy mixed integer linear programming solution. IET Gener Transm Distrib 1(5):836–846CrossRef
17.
Zurück zum Zitat Cohen AI, Yoshimura M (1983) A Branch-and-Bound algorithm for unit commitment. IEEE Trans Power Appar Syst 102(2):444–451CrossRef Cohen AI, Yoshimura M (1983) A Branch-and-Bound algorithm for unit commitment. IEEE Trans Power Appar Syst 102(2):444–451CrossRef
18.
Zurück zum Zitat Su C-C, Hsu Y-Y (1991) Fuzzy dynamic programming: an application to unit commitment. IEEE Trans Power Syst 6(3):1231–1237CrossRef Su C-C, Hsu Y-Y (1991) Fuzzy dynamic programming: an application to unit commitment. IEEE Trans Power Syst 6(3):1231–1237CrossRef
19.
Zurück zum Zitat Kazarlis SA, Bakirtzis AG, Petridis V (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans Power Syst 11(1):83–92CrossRef Kazarlis SA, Bakirtzis AG, Petridis V (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans Power Syst 11(1):83–92CrossRef
20.
Zurück zum Zitat Simopoulos DN, Kavatza SD, Vournas CD (2006) Unit commitment by an enhanced simulated annealing algorithm. IEEE Trans Power Syst 21(1):68–76CrossRef Simopoulos DN, Kavatza SD, Vournas CD (2006) Unit commitment by an enhanced simulated annealing algorithm. IEEE Trans Power Syst 21(1):68–76CrossRef
21.
Zurück zum Zitat Jeong YW, Park JB, Jang SH, Lee KY (2009) A new quantum inspired binary PSO for thermal unit commitment problems. In: Proceedings of IEEE international conference on intelligent system applications to power systems, Curitiba, Brazil, pp 1–6 Jeong YW, Park JB, Jang SH, Lee KY (2009) A new quantum inspired binary PSO for thermal unit commitment problems. In: Proceedings of IEEE international conference on intelligent system applications to power systems, Curitiba, Brazil, pp 1–6
22.
Zurück zum Zitat Juste KA, Kita H, Tanaka E, Hasegawa J (1999) An evolutionary programming solution to the unit commitment problem. IEEE Trans Power Syst 14(4):1452–1459CrossRef Juste KA, Kita H, Tanaka E, Hasegawa J (1999) An evolutionary programming solution to the unit commitment problem. IEEE Trans Power Syst 14(4):1452–1459CrossRef
23.
Zurück zum Zitat Hadji MM, Vahidi B (2012) A solution to the unit commitment problem using imperialistic competition algorithm. IEEE Trans Power Syst 27(1):117–124CrossRef Hadji MM, Vahidi B (2012) A solution to the unit commitment problem using imperialistic competition algorithm. IEEE Trans Power Syst 27(1):117–124CrossRef
24.
Zurück zum Zitat Balci H, Valenzuela J (2004) Scheduling electric power generations using particle swarm optimization combined with the Lagrangian relaxation method. Int J Appl Math Comput Sci 14(3):411–421MathSciNetMATH Balci H, Valenzuela J (2004) Scheduling electric power generations using particle swarm optimization combined with the Lagrangian relaxation method. Int J Appl Math Comput Sci 14(3):411–421MathSciNetMATH
25.
Zurück zum Zitat Saber NA, Salimi M, Mirabbbasi D (2016) A priority list based approach for solving thermal unit commitment problem with novel hybrid genetic-imperialist competitive algorithm. Energy 117(1):272–280CrossRef Saber NA, Salimi M, Mirabbbasi D (2016) A priority list based approach for solving thermal unit commitment problem with novel hybrid genetic-imperialist competitive algorithm. Energy 117(1):272–280CrossRef
26.
Zurück zum Zitat Kamboj VK, Bath SK, Dhillon JS (2016) Implementation of hybrid harmony search/random search algorithm for single area unit commitment problem. Int J Electr Power Energy Syst 77:228–249CrossRef Kamboj VK, Bath SK, Dhillon JS (2016) Implementation of hybrid harmony search/random search algorithm for single area unit commitment problem. Int J Electr Power Energy Syst 77:228–249CrossRef
27.
Zurück zum Zitat Wang B, Li Y, Watada J (2011) Re-scheduling the unit commitment problem in fuzzy environment. In: Proceedings of IEEE international conference on fuzzy systems, Taipei, Taiwan, pp 1090–1095 Wang B, Li Y, Watada J (2011) Re-scheduling the unit commitment problem in fuzzy environment. In: Proceedings of IEEE international conference on fuzzy systems, Taipei, Taiwan, pp 1090–1095
28.
Zurück zum Zitat Kamboj VK (2016) A novel hybrid PSO–GWO approach for unit commitment problem. Neural Comput Appl 27(6):1643–1655CrossRef Kamboj VK (2016) A novel hybrid PSO–GWO approach for unit commitment problem. Neural Comput Appl 27(6):1643–1655CrossRef
29.
Zurück zum Zitat Mallipeddi R, Suganthan PN (2014) Unit commitment—a survey and comparison of conventional and nature inspired algorithms. Int J BioInspir Comput 6(2):71–90CrossRef Mallipeddi R, Suganthan PN (2014) Unit commitment—a survey and comparison of conventional and nature inspired algorithms. Int J BioInspir Comput 6(2):71–90CrossRef
30.
31.
Zurück zum Zitat Hussien AG, Houssein EH, Hassanien AE (2017) A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In: Proceedings of IEEE international conference on intelligent computing and information systems, Egypt, pp 166–172 Hussien AG, Houssein EH, Hassanien AE (2017) A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In: Proceedings of IEEE international conference on intelligent computing and information systems, Egypt, pp 166–172
32.
Zurück zum Zitat Eid HF (2017) Binary whale optimization: an effective swarm algorithm for feature selection. Int J Metaheuristics 7(1):67–79MathSciNetCrossRef Eid HF (2017) Binary whale optimization: an effective swarm algorithm for feature selection. Int J Metaheuristics 7(1):67–79MathSciNetCrossRef
33.
Zurück zum Zitat Digalakis JG, Margaritis KG (2002) An experimental study of benchmarking functions for genetic algorithms. Int J Comput Math 79(4):403–416MathSciNetMATHCrossRef Digalakis JG, Margaritis KG (2002) An experimental study of benchmarking functions for genetic algorithms. Int J Comput Math 79(4):403–416MathSciNetMATHCrossRef
34.
Zurück zum Zitat Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: Proceedings of IEEE swarm intelligence symposium, Pasadena, CA, pp 68–75 Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: Proceedings of IEEE swarm intelligence symposium, Pasadena, CA, pp 68–75
35.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–681CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–681CrossRef
36.
Zurück zum Zitat Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of IEEE international conference on computational cybernetics and simulation, Orlando, pp 4104–4108 Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of IEEE international conference on computational cybernetics and simulation, Orlando, pp 4104–4108
37.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Yang X-S (2014) Binary bat algorithm. Neural Comput Appl 25(3–4):663–681CrossRef Mirjalili S, Mirjalili SM, Yang X-S (2014) Binary bat algorithm. Neural Comput Appl 25(3–4):663–681CrossRef
38.
Zurück zum Zitat Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073CrossRef Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073CrossRef
39.
Zurück zum Zitat Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381CrossRef Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381CrossRef
40.
Zurück zum Zitat Jeong Y-W, Lee W-N, Kim H-H, Park J-B, Shin J-R (2009) Thermal unit commitment using binary differential evolution. J Electr Eng Technol 4(3):323–329CrossRef Jeong Y-W, Lee W-N, Kim H-H, Park J-B, Shin J-R (2009) Thermal unit commitment using binary differential evolution. J Electr Eng Technol 4(3):323–329CrossRef
41.
Zurück zum Zitat Sriyanyong P, Song YH (2005) Unit commitment using particle swarm optimization combined with Lagrange relaxation. In: IEEE power engineering society general meeting, San Francisco, USA, pp 1–8 Sriyanyong P, Song YH (2005) Unit commitment using particle swarm optimization combined with Lagrange relaxation. In: IEEE power engineering society general meeting, San Francisco, USA, pp 1–8
42.
Zurück zum Zitat Panwar LK, Reddy SK, Kumar R (2015) Binary fireworks algorithm based thermal unit commitment. Int J Swarm Intell Res 6(2):87–101CrossRef Panwar LK, Reddy SK, Kumar R (2015) Binary fireworks algorithm based thermal unit commitment. Int J Swarm Intell Res 6(2):87–101CrossRef
43.
Zurück zum Zitat Singhal PK, Naresh R, Sharma V (2015) A novel strategy-based hybrid binary artificial bee colony algorithm for unit commitment problem. Arab J Sci Eng 40(5):1455–1469CrossRef Singhal PK, Naresh R, Sharma V (2015) A novel strategy-based hybrid binary artificial bee colony algorithm for unit commitment problem. Arab J Sci Eng 40(5):1455–1469CrossRef
44.
Zurück zum Zitat Khanmohammadi S, Amiri M, TarafdarHaque M (2010) A new three-stage method for solving unit commitment problem. Energy 35(7):3072–3080CrossRef Khanmohammadi S, Amiri M, TarafdarHaque M (2010) A new three-stage method for solving unit commitment problem. Energy 35(7):3072–3080CrossRef
45.
Zurück zum Zitat Roque LAC (2016) Optimization methods for the unit commitment problem in electric power systems. Dissertation, University of Porto Roque LAC (2016) Optimization methods for the unit commitment problem in electric power systems. Dissertation, University of Porto
46.
Zurück zum Zitat Bai X, Wei H (2009) Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints. IET Gener Transm Distrib 3(2):182–197CrossRef Bai X, Wei H (2009) Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints. IET Gener Transm Distrib 3(2):182–197CrossRef
47.
Zurück zum Zitat Huang KY, Yang HT, Huang CL (1998) A new thermal unit commitment approach using constraint logic programming. IEEE Trans Power Syst 13(3):936–945CrossRef Huang KY, Yang HT, Huang CL (1998) A new thermal unit commitment approach using constraint logic programming. IEEE Trans Power Syst 13(3):936–945CrossRef
48.
Zurück zum Zitat Chandrasekaran K, Hemamalini S, Simon SP, Padhy NP (2009) Thermal unit commitment using binary/real coded artificial bee colony algorithm. Electr Power Syst Res 84:109–119CrossRef Chandrasekaran K, Hemamalini S, Simon SP, Padhy NP (2009) Thermal unit commitment using binary/real coded artificial bee colony algorithm. Electr Power Syst Res 84:109–119CrossRef
49.
Zurück zum Zitat Chandrasekaran K, Simon SP (2013) Optimal deviation based firefly algorithm tuned fuzzy design for multi-objective UCP. IEEE Trans Power Syst 28:460–471CrossRef Chandrasekaran K, Simon SP (2013) Optimal deviation based firefly algorithm tuned fuzzy design for multi-objective UCP. IEEE Trans Power Syst 28:460–471CrossRef
50.
Zurück zum Zitat Koodalsamy B, Veerayan MB, Koodalsamy C, Simon SP (2016) Firefly algorithm with multiple workers for the power system unit commitment. Turk J Electr Eng Comput Sci 24:4773–4789CrossRef Koodalsamy B, Veerayan MB, Koodalsamy C, Simon SP (2016) Firefly algorithm with multiple workers for the power system unit commitment. Turk J Electr Eng Comput Sci 24:4773–4789CrossRef
51.
Zurück zum Zitat Sun L, Zhang Y, Jiang C (2006) A matrix real-coded genetic algorithm to the unit commitment problem. Elect Power Syst Res 76(9–10):716–728CrossRef Sun L, Zhang Y, Jiang C (2006) A matrix real-coded genetic algorithm to the unit commitment problem. Elect Power Syst Res 76(9–10):716–728CrossRef
52.
Zurück zum Zitat Saber AY, Senjyu T, Yona A, Funabashi T (2007) Unit commitment computation by fuzzy adaptive particle swarm optimization. IET Gener Transm Distrib 1:456–465CrossRef Saber AY, Senjyu T, Yona A, Funabashi T (2007) Unit commitment computation by fuzzy adaptive particle swarm optimization. IET Gener Transm Distrib 1:456–465CrossRef
Metadaten
Titel
Binary whale optimization algorithm and its application to unit commitment problem
verfasst von
Vijay Kumar
Dinesh Kumar
Publikationsdatum
16.10.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 7/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3796-3

Weitere Artikel der Ausgabe 7/2020

Neural Computing and Applications 7/2020 Zur Ausgabe

Deep Learning & Neural Computing for Intelligent Sensing and Control

Traffic identification and traffic analysis based on support vector machine

Deep Learning & Neural Computing for Intelligent Sensing and Control

Application research of improved genetic algorithm based on machine learning in production scheduling

Premium Partner