Skip to main content
Erschienen in: Journal of Nanoparticle Research 10/2011

01.10.2011 | Review

Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review

verfasst von: Shih-Hung Huang, Ruey-Shin Juang

Erschienen in: Journal of Nanoparticle Research | Ausgabe 10/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32 Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32
Zurück zum Zitat Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, Liu J, Wei Y, Li Y (2007) Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano 1:293–298CrossRef Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, Liu J, Wei Y, Li Y (2007) Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano 1:293–298CrossRef
Zurück zum Zitat Berry CC (2009) Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42:1–9CrossRef Berry CC (2009) Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42:1–9CrossRef
Zurück zum Zitat Berry CC, Curtis ASG (2003) Functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R198–R206CrossRef Berry CC, Curtis ASG (2003) Functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R198–R206CrossRef
Zurück zum Zitat Bhattarai SR, Badahur KCR, Aryal S, Khil MS, Kim HY (2007) N-acylated chitosan stabilized iron oxide nanoparticles as a novel nano-matrix and ceramic modification. Carbohydr Polym 69:467–477CrossRef Bhattarai SR, Badahur KCR, Aryal S, Khil MS, Kim HY (2007) N-acylated chitosan stabilized iron oxide nanoparticles as a novel nano-matrix and ceramic modification. Carbohydr Polym 69:467–477CrossRef
Zurück zum Zitat Brown MA, Semelka RC (2003) MRI: basic principles and applications. Wiley-Liss, New YorkCrossRef Brown MA, Semelka RC (2003) MRI: basic principles and applications. Wiley-Liss, New YorkCrossRef
Zurück zum Zitat Chang YC, Chen DH (2005) Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent. Macromol Biosci 5:254–261CrossRef Chang YC, Chen DH (2005) Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent. Macromol Biosci 5:254–261CrossRef
Zurück zum Zitat Chang YC, Shieh DB, Chang CH, Chen DH (2005) Conjugation of monodisperse chitosan-bound magnetic nanocarrier with epirubicin for targeted cancer therapy. J Biomed Nanotech 1:196–205CrossRef Chang YC, Shieh DB, Chang CH, Chen DH (2005) Conjugation of monodisperse chitosan-bound magnetic nanocarrier with epirubicin for targeted cancer therapy. J Biomed Nanotech 1:196–205CrossRef
Zurück zum Zitat Charusheela A, Arvind L (2002) Enzyme catalyzed hydrolysis of esters using reversibly soluble polymer conjugated lipases. Enzyme Microb Technol 30:19–25CrossRef Charusheela A, Arvind L (2002) Enzyme catalyzed hydrolysis of esters using reversibly soluble polymer conjugated lipases. Enzyme Microb Technol 30:19–25CrossRef
Zurück zum Zitat Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yanga VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:487–496CrossRef Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yanga VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:487–496CrossRef
Zurück zum Zitat Choi JS, Jun YW, Yeon SI, Kim HC, Shin JS, Cheon J (2006) Biocompatible heterostructured nanoparticles for multimodal biological detection. J Am Chem Soc 128:15982–15983CrossRef Choi JS, Jun YW, Yeon SI, Kim HC, Shin JS, Cheon J (2006) Biocompatible heterostructured nanoparticles for multimodal biological detection. J Am Chem Soc 128:15982–15983CrossRef
Zurück zum Zitat Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62:144–149CrossRef Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62:144–149CrossRef
Zurück zum Zitat Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC (2010) In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc 132:13270–13278CrossRef Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC (2010) In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc 132:13270–13278CrossRef
Zurück zum Zitat Corchero JL, Villaverde A (2009) Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol 27:468–476CrossRef Corchero JL, Villaverde A (2009) Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol 27:468–476CrossRef
Zurück zum Zitat Dimitrov I, Trzebicza B, Muller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive interacting entities. Prog Polym Sci 32:1275–1343CrossRef Dimitrov I, Trzebicza B, Muller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive interacting entities. Prog Polym Sci 32:1275–1343CrossRef
Zurück zum Zitat Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA (2003) Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685CrossRef Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA (2003) Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685CrossRef
Zurück zum Zitat Fortin JP, Gaxeau G, Wilhelm C (2008) Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles. Eur Biophys J 37:223–228CrossRef Fortin JP, Gaxeau G, Wilhelm C (2008) Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles. Eur Biophys J 37:223–228CrossRef
Zurück zum Zitat Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B (2007) FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc 129:1428–1433CrossRef Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B (2007) FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc 129:1428–1433CrossRef
Zurück zum Zitat Gao J, Liang G, Cheung JS, Pan Y, Kuang Y, Zhao F, Zhang B, Zhang X, Wu EX, Xu B (2008) Multifunctional yolk-shell nanoparticles: a potential MRI contrast and anticancer agent. J Am Chem Soc 130:11828–11833CrossRef Gao J, Liang G, Cheung JS, Pan Y, Kuang Y, Zhao F, Zhang B, Zhang X, Wu EX, Xu B (2008) Multifunctional yolk-shell nanoparticles: a potential MRI contrast and anticancer agent. J Am Chem Soc 130:11828–11833CrossRef
Zurück zum Zitat Gardimalla HMR, Mandal D, Stevens PD, Yen M, Gao Y (2005) Superparamagnetic nanoparticle-supported enzymatic resolution of racemic carboxylates. Chem Commun 4432–4434 Gardimalla HMR, Mandal D, Stevens PD, Yen M, Gao Y (2005) Superparamagnetic nanoparticle-supported enzymatic resolution of racemic carboxylates. Chem Commun 4432–4434
Zurück zum Zitat Gazeau F, Lévy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3:831–844CrossRef Gazeau F, Lévy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3:831–844CrossRef
Zurück zum Zitat Ghamgui H, Miled N, Karra-Chaâbouni M, Gargouri Y (2007) Immobilization studies and biochemical properties of free and immobilized Rhizopus oryzae lipase onto CaCO3: a comparative study. Biochem Eng J 37:34–41CrossRef Ghamgui H, Miled N, Karra-Chaâbouni M, Gargouri Y (2007) Immobilization studies and biochemical properties of free and immobilized Rhizopus oryzae lipase onto CaCO3: a comparative study. Biochem Eng J 37:34–41CrossRef
Zurück zum Zitat Ghiaci M, Aghaei H, Soleimanian S, Sedaghat ME (2009) Enzyme immobilization 1. Modified bentonite as a new and efficient support for immobilization of Candida rugosa lipase. Appl Clay Sci 43:289–295CrossRef Ghiaci M, Aghaei H, Soleimanian S, Sedaghat ME (2009) Enzyme immobilization 1. Modified bentonite as a new and efficient support for immobilization of Candida rugosa lipase. Appl Clay Sci 43:289–295CrossRef
Zurück zum Zitat Gu H, Zheng R, Zhang XX, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126:5664–5665CrossRef Gu H, Zheng R, Zhang XX, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126:5664–5665CrossRef
Zurück zum Zitat Gu H, Yang Z, Gao J, Chang CK, Xu B (2005) Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc 127:34–35CrossRef Gu H, Yang Z, Gao J, Chang CK, Xu B (2005) Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc 127:34–35CrossRef
Zurück zum Zitat Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 941–949 Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 941–949
Zurück zum Zitat Hahn M, Görnitz E, Dautzenberg H (1998) Synthesis and properties of ionically modified polymers with LCST behavior. Macromolecules 31:5616–5623CrossRef Hahn M, Görnitz E, Dautzenberg H (1998) Synthesis and properties of ionically modified polymers with LCST behavior. Macromolecules 31:5616–5623CrossRef
Zurück zum Zitat Halling PJ, Dunnill P (1980) Magnetic supports for immobilized enzymes and bioaffinity adsorbents. Enzyme Microb Technol 2:2–10CrossRef Halling PJ, Dunnill P (1980) Magnetic supports for immobilized enzymes and bioaffinity adsorbents. Enzyme Microb Technol 2:2–10CrossRef
Zurück zum Zitat Hao R, Xing RJ, Xu ZC, Hou Y, Gao S, Sun SH (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742CrossRef Hao R, Xing RJ, Xu ZC, Hou Y, Gao S, Sun SH (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742CrossRef
Zurück zum Zitat Herrmann IK, Grass RN, Mazunin D, Stark WJ (2009) Synthesis and covalent surface functionalization of nonoxidic iron core-shell nanomagnets. Chem Mater 21:3275–3281CrossRef Herrmann IK, Grass RN, Mazunin D, Stark WJ (2009) Synthesis and covalent surface functionalization of nonoxidic iron core-shell nanomagnets. Chem Mater 21:3275–3281CrossRef
Zurück zum Zitat Herrmann IK, Urner M, Koehler FM, Hasler M, Roth-Z’Graggen B, Grass RN, Ziegler U, Beck-Schimmer B, Stark WJ (2010) Blood purification using functionalized core/shell nanomagnets. Small 6:1388–1392CrossRef Herrmann IK, Urner M, Koehler FM, Hasler M, Roth-Z’Graggen B, Grass RN, Ziegler U, Beck-Schimmer B, Stark WJ (2010) Blood purification using functionalized core/shell nanomagnets. Small 6:1388–1392CrossRef
Zurück zum Zitat Hong X, Li J, Wang M, Xu J, Guo W, Li J, Bai Y, Li T (2004) Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem Mater 16:4022–4027CrossRef Hong X, Li J, Wang M, Xu J, Guo W, Li J, Bai Y, Li T (2004) Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem Mater 16:4022–4027CrossRef
Zurück zum Zitat Hong CY, Chen WH, Jian ZF, Yang SY, Horng HE, Yang LC, Yang HC (2007) Wash-free immunomagnetic detection for serum through magnetic susceptibility reduction. Appl Phys Lett 90:074105:1–074105:3 Hong CY, Chen WH, Jian ZF, Yang SY, Horng HE, Yang LC, Yang HC (2007) Wash-free immunomagnetic detection for serum through magnetic susceptibility reduction. Appl Phys Lett 90:074105:1–074105:3
Zurück zum Zitat Hong CY, Wu CC, Chiu YC, Yang SY, Horng HE, Yang HC (2006) Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl Phys Lett 88:212512:1–212512:3 Hong CY, Wu CC, Chiu YC, Yang SY, Horng HE, Yang HC (2006) Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl Phys Lett 88:212512:1–212512:3
Zurück zum Zitat Huang SH, Chen DH (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163:174–179CrossRef Huang SH, Chen DH (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163:174–179CrossRef
Zurück zum Zitat Huang SH, Liao MH, Chen DH (2003) Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog 19:1095–1100CrossRef Huang SH, Liao MH, Chen DH (2003) Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog 19:1095–1100CrossRef
Zurück zum Zitat Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRef Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRef
Zurück zum Zitat Huang WC, Tsai PJ, Chen YC (2009) Multifunctional Fe3O4@Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic-resistant bacteria. Small 5:51–56CrossRef Huang WC, Tsai PJ, Chen YC (2009) Multifunctional Fe3O4@Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic-resistant bacteria. Small 5:51–56CrossRef
Zurück zum Zitat Huang J, Zhao R, Wang H, Zhao W, Ding L (2010) Immobilization of glucose oxidase on Fe3O4/SiO2 magnetic nanoparticles. Biotechnol Lett 32:817–821CrossRef Huang J, Zhao R, Wang H, Zhao W, Ding L (2010) Immobilization of glucose oxidase on Fe3O4/SiO2 magnetic nanoparticles. Biotechnol Lett 32:817–821CrossRef
Zurück zum Zitat Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 927–934 Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 927–934
Zurück zum Zitat Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, Kobayashi T (2004) Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 212:167–175CrossRef Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, Kobayashi T (2004) Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 212:167–175CrossRef
Zurück zum Zitat Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2:18–29CrossRef Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2:18–29CrossRef
Zurück zum Zitat Ji X, Shao R, Elliott AM, Stafford RJ, Esparza-Coss E, Bankson JA, Liang G, Luo ZP, Park K, Markert JT, Li C (2007) Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C 111:6245–6251CrossRef Ji X, Shao R, Elliott AM, Stafford RJ, Esparza-Coss E, Bankson JA, Liang G, Luo ZP, Park K, Markert JT, Li C (2007) Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C 111:6245–6251CrossRef
Zurück zum Zitat Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732–5733CrossRef Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732–5733CrossRef
Zurück zum Zitat Jun YW, Choi JS, Cheon J (2007) Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem Commun 1203–1214 Jun YW, Choi JS, Cheon J (2007) Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem Commun 1203–1214
Zurück zum Zitat Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, Yang I, Kim JS, Kim SK, Cho MH, Hyeon T (2006) Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed 45:7754–7758CrossRef Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, Yang I, Kim JS, Kim SK, Cho MH, Hyeon T (2006) Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed 45:7754–7758CrossRef
Zurück zum Zitat Koppolu B, Rahimi M, Nattama S, Wadajkar A, Nguyen KT (2010) Development of multiple-layer polymeric particles for targeted and controlled drug delivery. Nanomed NBM 6:355–361CrossRef Koppolu B, Rahimi M, Nattama S, Wadajkar A, Nguyen KT (2010) Development of multiple-layer polymeric particles for targeted and controlled drug delivery. Nanomed NBM 6:355–361CrossRef
Zurück zum Zitat Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006a) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128:7383–7389CrossRef Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006a) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128:7383–7389CrossRef
Zurück zum Zitat Lee JH, Jun YW, Yeon SI, Shin JS, Cheon J (2006b) Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem 118:8340–8342CrossRef Lee JH, Jun YW, Yeon SI, Shin JS, Cheon J (2006b) Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem 118:8340–8342CrossRef
Zurück zum Zitat Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99CrossRef Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99CrossRef
Zurück zum Zitat Lee J, Yang J, Ko H, Oh SJ, Kang J, Son JH, Lee K, Lee SW, Yoon HG, Suh JS, Huh YM, Haam S (2008) Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv Funct Mater 18:258–264CrossRef Lee J, Yang J, Ko H, Oh SJ, Kang J, Son JH, Lee K, Lee SW, Yoon HG, Suh JS, Huh YM, Haam S (2008) Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv Funct Mater 18:258–264CrossRef
Zurück zum Zitat Liao MH, Wu KY, Chen DH (2004) Fast adsorption of crystal violet on polyacrylic acid-bound magnetic nanoparticles. Sep Sci Technol 39:1563–1575CrossRef Liao MH, Wu KY, Chen DH (2004) Fast adsorption of crystal violet on polyacrylic acid-bound magnetic nanoparticles. Sep Sci Technol 39:1563–1575CrossRef
Zurück zum Zitat Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453CrossRef Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453CrossRef
Zurück zum Zitat Liu R, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287:627–643CrossRef Liu R, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287:627–643CrossRef
Zurück zum Zitat Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711CrossRef Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711CrossRef
Zurück zum Zitat Magnin D, Dumitriu S, Magny P, Chornet E (2001) Lipase immobilization into porous chitoxan beads: activities in aqueous and organic media and lipase localization. Biotechnol Prog 17:734–737CrossRef Magnin D, Dumitriu S, Magny P, Chornet E (2001) Lipase immobilization into porous chitoxan beads: activities in aqueous and organic media and lipase localization. Biotechnol Prog 17:734–737CrossRef
Zurück zum Zitat Mahdavian AR, Mirrahimi MAS (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159:264–271CrossRef Mahdavian AR, Mirrahimi MAS (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159:264–271CrossRef
Zurück zum Zitat Mak SY, Chen DH (2005) Binding and sulfonation of poly(acrylic acid) on iron oxide nanoparticles: a novel, magnetic, strong acid cation nano-adsorbent. Macromol Rapid Commun 26:1567–1571CrossRef Mak SY, Chen DH (2005) Binding and sulfonation of poly(acrylic acid) on iron oxide nanoparticles: a novel, magnetic, strong acid cation nano-adsorbent. Macromol Rapid Commun 26:1567–1571CrossRef
Zurück zum Zitat Marquez LDS, Cabral BV, Freitas FF, Cardoso VL, Ribeiro EJ (2008) Optimization of invertase immobilization by adsorption in ionic exchange resin for sucrose hydrolysis. J Mol Catal B Enzym 51:86–92CrossRef Marquez LDS, Cabral BV, Freitas FF, Cardoso VL, Ribeiro EJ (2008) Optimization of invertase immobilization by adsorption in ionic exchange resin for sucrose hydrolysis. J Mol Catal B Enzym 51:86–92CrossRef
Zurück zum Zitat Masashige S (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94:606–613 Masashige S (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94:606–613
Zurück zum Zitat Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580CrossRef Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580CrossRef
Zurück zum Zitat Medeiros SF, Santos AM, Fessi H, Elaissari A (2011) Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm 403:139–161CrossRef Medeiros SF, Santos AM, Fessi H, Elaissari A (2011) Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm 403:139–161CrossRef
Zurück zum Zitat Miyawaki J, Yudasaka M, Imai H, Yorimitsu H, Isobe H, Nakamura E, Iijima S (2006) In vivo magnetic resonance imaging of single-walled carbon nanohorns by labeling with magnetite nanoparticles. Adv Mater 18:1010–1014CrossRef Miyawaki J, Yudasaka M, Imai H, Yorimitsu H, Isobe H, Nakamura E, Iijima S (2006) In vivo magnetic resonance imaging of single-walled carbon nanohorns by labeling with magnetite nanoparticles. Adv Mater 18:1010–1014CrossRef
Zurück zum Zitat Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148CrossRef Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148CrossRef
Zurück zum Zitat Peng R, Zhang W, Ran Q, Liang C, Jing L, Ye S, Xian Y (2011) Magnetically switchable bioelectrocatalytic system based on ferrocene grafted iron oxide nanoparticles. Langmuir 27:2910–2916CrossRef Peng R, Zhang W, Ran Q, Liang C, Jing L, Ye S, Xian Y (2011) Magnetically switchable bioelectrocatalytic system based on ferrocene grafted iron oxide nanoparticles. Langmuir 27:2910–2916CrossRef
Zurück zum Zitat Piao Y, Kim J, Na HB, Kim D, Baek JS, Ko MK, Lee JH, Shokouhimehr M, Hyeon T (2008) Wrap-bake-peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat Mater 7:242–247CrossRef Piao Y, Kim J, Na HB, Kim D, Baek JS, Ko MK, Lee JH, Shokouhimehr M, Hyeon T (2008) Wrap-bake-peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat Mater 7:242–247CrossRef
Zurück zum Zitat Purushotham S, Ramanujan RV (2010) Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater 6:502–510CrossRef Purushotham S, Ramanujan RV (2010) Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater 6:502–510CrossRef
Zurück zum Zitat Salgueiriño-Maceira V, Correa-Duarte MA, Farle M, López-Quintela A, Sieradzki K, Diaz R (2006) Bifunctional gold-coated magnetic silica spheres. Chem Mater 18:2701–2706CrossRef Salgueiriño-Maceira V, Correa-Duarte MA, Farle M, López-Quintela A, Sieradzki K, Diaz R (2006) Bifunctional gold-coated magnetic silica spheres. Chem Mater 18:2701–2706CrossRef
Zurück zum Zitat Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:544–568CrossRef Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:544–568CrossRef
Zurück zum Zitat Shen CR, Wu ST, Tsai ZT, Wang JJ, Yen TC, Tsai JS, Shih MF, Liu CL (2011) Characterization of quaternized chitosan-stabilized iron oxide nanoparticles as a novel potentialmagnetic resonance imaging contrast agent for cell tracking. Polym Int 60:945–950CrossRef Shen CR, Wu ST, Tsai ZT, Wang JJ, Yen TC, Tsai JS, Shih MF, Liu CL (2011) Characterization of quaternized chitosan-stabilized iron oxide nanoparticles as a novel potentialmagnetic resonance imaging contrast agent for cell tracking. Polym Int 60:945–950CrossRef
Zurück zum Zitat Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME, Landmark KJ, Baker JR Jr (2008) Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in vivo magnetic resonance imaging of tumors. Adv Mater 20:1671–1678CrossRef Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME, Landmark KJ, Baker JR Jr (2008) Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in vivo magnetic resonance imaging of tumors. Adv Mater 20:1671–1678CrossRef
Zurück zum Zitat Shieh DB, Su CH, Chang FY, Wu YN, Su WC, Hwu JR, Chen JH, Yeh CS (2006) Aqueous nickel-nitrilotriacetate modified Fe3O4–NH3 + nanoparticles for protein purification and cell targeting. Nanotechnology 17:4174–4182CrossRef Shieh DB, Su CH, Chang FY, Wu YN, Su WC, Hwu JR, Chen JH, Yeh CS (2006) Aqueous nickel-nitrilotriacetate modified Fe3O4–NH3 + nanoparticles for protein purification and cell targeting. Nanotechnology 17:4174–4182CrossRef
Zurück zum Zitat Shin S, Jang J (2007) Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chem Commun 4230–4232 Shin S, Jang J (2007) Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chem Commun 4230–4232
Zurück zum Zitat Shkilnyy A, Munnier E, Hervé K, Soucé M, Benoit R, Cohen-Jonathan S, Limelette P, Saboungi ML, Dubois P, Chourpa I (2010) Synthesis and evaluation of novel biocompatible super-paramagnetic iron oxide nanoparticles as magnetic anticancer drug carrier and fluorescence active label. J Phys Chem C 114:5850–5858CrossRef Shkilnyy A, Munnier E, Hervé K, Soucé M, Benoit R, Cohen-Jonathan S, Limelette P, Saboungi ML, Dubois P, Chourpa I (2010) Synthesis and evaluation of novel biocompatible super-paramagnetic iron oxide nanoparticles as magnetic anticancer drug carrier and fluorescence active label. J Phys Chem C 114:5850–5858CrossRef
Zurück zum Zitat Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRef Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRef
Zurück zum Zitat Taboada E, Solanas R, Rodríguez E, Weissleder R, Roig A (2009) Supercritical-fluid-assisted one-pot synthesis of biocompatible core(γ-Fe2O3)/shell(SiO2) nanoparticles as high relaxivity T2-contrast agents for magnetic resonance imaging. Adv Funct Mater 19:2319–2324CrossRef Taboada E, Solanas R, Rodríguez E, Weissleder R, Roig A (2009) Supercritical-fluid-assisted one-pot synthesis of biocompatible core(γ-Fe2O3)/shell(SiO2) nanoparticles as high relaxivity T2-contrast agents for magnetic resonance imaging. Adv Funct Mater 19:2319–2324CrossRef
Zurück zum Zitat Takaç S, Bakkal M (2007) Impressive effect of immobilization conditions on the catalytic activity and enantioselectivity of Candida rugosa lipase toward S-Naproxen production. Process Biochem 42:1021–1027CrossRef Takaç S, Bakkal M (2007) Impressive effect of immobilization conditions on the catalytic activity and enantioselectivity of Candida rugosa lipase toward S-Naproxen production. Process Biochem 42:1021–1027CrossRef
Zurück zum Zitat Trana N, Webster TJ (2010) Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20:8760–8767CrossRef Trana N, Webster TJ (2010) Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20:8760–8767CrossRef
Zurück zum Zitat Tuček J, Zboril R, Petridis D (2006) Maghemite nanoparticles by view of Mössbauer spectroscopy. J Nanosci Nanotechnol 6:926–947CrossRef Tuček J, Zboril R, Petridis D (2006) Maghemite nanoparticles by view of Mössbauer spectroscopy. J Nanosci Nanotechnol 6:926–947CrossRef
Zurück zum Zitat Vertrees RA, Das GC, Coscio AM, Xie J, Zwischenberger JB, Boor PJ (2005) A mechanism of hyperthermia-induced apoptosis in ras-transformed lung cells. Mol Carcinog 44:111–121CrossRef Vertrees RA, Das GC, Coscio AM, Xie J, Zwischenberger JB, Boor PJ (2005) A mechanism of hyperthermia-induced apoptosis in ras-transformed lung cells. Mol Carcinog 44:111–121CrossRef
Zurück zum Zitat Wang CG, Irudayaraj J (2010) Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 6:83–289 Wang CG, Irudayaraj J (2010) Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 6:83–289
Zurück zum Zitat Wang L, Yang ZM, Gao JH, Xu KM, Gu HW, Zhang B, Zhang XX, Xu B (2006) A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J Am Chem Soc 128:13358–13359CrossRef Wang L, Yang ZM, Gao JH, Xu KM, Gu HW, Zhang B, Zhang XX, Xu B (2006) A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J Am Chem Soc 128:13358–13359CrossRef
Zurück zum Zitat Wang TW, Wu HC, Wang WR, Lin FH, Lou PJ, Shieh MJ, Young TH (2007) The development of magnetic degradable DP-bioglass for hyperthermia cancer therapy. J Biomed Mater Res A 83A:828–837CrossRef Wang TW, Wu HC, Wang WR, Lin FH, Lou PJ, Shieh MJ, Young TH (2007) The development of magnetic degradable DP-bioglass for hyperthermia cancer therapy. J Biomed Mater Res A 83A:828–837CrossRef
Zurück zum Zitat Wang LY, Bai JW, Li YJ, Huang Y (2008) Multifunctional nanoparticles displaying magnetization and near-IR absorption. Angew Chem Int Ed 47:2439–2442CrossRef Wang LY, Bai JW, Li YJ, Huang Y (2008) Multifunctional nanoparticles displaying magnetization and near-IR absorption. Angew Chem Int Ed 47:2439–2442CrossRef
Zurück zum Zitat Wang Y, Shen Y, Xie A, Li S, Wang X, Cai Y (2010) A simple method to construct bifunctional Fe3O4/Au hybrid nanostructures and tune their optical properties in the near-infrared region. J Phys Chem C 114:4297–4301CrossRef Wang Y, Shen Y, Xie A, Li S, Wang X, Cai Y (2010) A simple method to construct bifunctional Fe3O4/Au hybrid nanostructures and tune their optical properties in the near-infrared region. J Phys Chem C 114:4297–4301CrossRef
Zurück zum Zitat Xie HY, Zhen R, Wang B, Feng YJ, Chen P, Hao J (2010) Fe3O4/Au core/shell nanoparticles modified with Ni2+-nitrilotriacetic acid specific to histidine-tagged proteins. J Phys Chem C 114:4825–4830CrossRef Xie HY, Zhen R, Wang B, Feng YJ, Chen P, Hao J (2010) Fe3O4/Au core/shell nanoparticles modified with Ni2+-nitrilotriacetic acid specific to histidine-tagged proteins. J Phys Chem C 114:4825–4830CrossRef
Zurück zum Zitat Xu C, Xu K, Gu H, Zhong X, Guo Z, Zheng R, Zhang X, Xu B (2004) Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc 126:3392–3393CrossRef Xu C, Xu K, Gu H, Zhong X, Guo Z, Zheng R, Zhang X, Xu B (2004) Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc 126:3392–3393CrossRef
Zurück zum Zitat Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699CrossRef Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699CrossRef
Zurück zum Zitat Xu F, Geiger JH, Baker GL, Bruening ML (2011) Polymer brush-modified magnetic nanoparticles for his-tagged protein purification. Langmuir 27:3106–3112CrossRef Xu F, Geiger JH, Baker GL, Bruening ML (2011) Polymer brush-modified magnetic nanoparticles for his-tagged protein purification. Langmuir 27:3106–3112CrossRef
Zurück zum Zitat Yang SY, Chieh JJ, Wang WC, Yu CY, Lan CB, Chen JH, Horng HE, Hong CY, Yang HC, Huang W (2008) Ultra-highly sensitive and wash-free bio-detection of H5N1 virus by immunomagnetic reduction assays. J Virol Methods 153:250–252CrossRef Yang SY, Chieh JJ, Wang WC, Yu CY, Lan CB, Chen JH, Horng HE, Hong CY, Yang HC, Huang W (2008) Ultra-highly sensitive and wash-free bio-detection of H5N1 virus by immunomagnetic reduction assays. J Virol Methods 153:250–252CrossRef
Zurück zum Zitat Yang SY, Wang WC, Lan CB, Chen CH, Chieh JJ, Horng HE, Hong CY, Yang HC, Tsai CP, Yang CY, Cheng IC, Chung WC (2010) Magnetically enhanced high-specificity virus detection using bio-activated magnetic nanoparticles with antibodies as labeling markers. J Virol Methods 164:14–18CrossRef Yang SY, Wang WC, Lan CB, Chen CH, Chieh JJ, Horng HE, Hong CY, Yang HC, Tsai CP, Yang CY, Cheng IC, Chung WC (2010) Magnetically enhanced high-specificity virus detection using bio-activated magnetic nanoparticles with antibodies as labeling markers. J Virol Methods 164:14–18CrossRef
Zurück zum Zitat Yang CC, Yang SY, Chieh JJ, Horng HE, Hong CY, Yang HC, Chen KH, Shih BY, Chen TF Chiu MJ (2011a) Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem Neurosci. doi:10.1021/cn200028j Yang CC, Yang SY, Chieh JJ, Horng HE, Hong CY, Yang HC, Chen KH, Shih BY, Chen TF Chiu MJ (2011a) Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem Neurosci. doi:10.​1021/​cn200028j
Zurück zum Zitat Yang SY, Chieh JJ, Wang WC, Yu CY, Hing NS, Horng HE, Hong CY, Yang HC, Chang CF, Lin HY (2011b) Magnetic nanoparticles for high-sensitivity detection on nucleic acids via superconducting quantum interference device-based immunomagnetic reduction assay. J Magn Magn Mater 323:681–685CrossRef Yang SY, Chieh JJ, Wang WC, Yu CY, Hing NS, Horng HE, Hong CY, Yang HC, Chang CF, Lin HY (2011b) Magnetic nanoparticles for high-sensitivity detection on nucleic acids via superconducting quantum interference device-based immunomagnetic reduction assay. J Magn Magn Mater 323:681–685CrossRef
Zurück zum Zitat Ye P, Jiang J, Xu ZK (2007) Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface. Colloid Surf B Biointerfaces 60:62–67CrossRef Ye P, Jiang J, Xu ZK (2007) Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface. Colloid Surf B Biointerfaces 60:62–67CrossRef
Zurück zum Zitat Yeşiloğlu Y (2005) Utilization of bentonite as a support material for immobilization of Candida rugosa lipase. Process Biochem 40:2155–2159CrossRef Yeşiloğlu Y (2005) Utilization of bentonite as a support material for immobilization of Candida rugosa lipase. Process Biochem 40:2155–2159CrossRef
Zurück zum Zitat Yu H, Chen M, Rice PM, Wang SX, White RL, Sun S (2005) Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett 5:379–382CrossRef Yu H, Chen M, Rice PM, Wang SX, White RL, Sun S (2005) Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett 5:379–382CrossRef
Zurück zum Zitat Zhou L, Yuan J, Yuan W, Sui X, Wu S, Li Z, Shen D (2009) Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles. J Magn Magn Mater 321:2799–2804CrossRef Zhou L, Yuan J, Yuan W, Sui X, Wu S, Li Z, Shen D (2009) Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles. J Magn Magn Mater 321:2799–2804CrossRef
Zurück zum Zitat Zhu HY, Jiang R, Xiao L (2010) Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Appl Clay Sci 48:522–526CrossRef Zhu HY, Jiang R, Xiao L (2010) Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Appl Clay Sci 48:522–526CrossRef
Metadaten
Titel
Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review
verfasst von
Shih-Hung Huang
Ruey-Shin Juang
Publikationsdatum
01.10.2011
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 10/2011
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-011-0551-4

Weitere Artikel der Ausgabe 10/2011

Journal of Nanoparticle Research 10/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.