Skip to main content

2017 | OriginalPaper | Buchkapitel

Biodegradable Polymers for Bone Tissue Engineering

verfasst von : M. Susana Cortizo, M. Soledad Belluzo

Erschienen in: Industrial Applications of Renewable Biomass Products

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, tissue engineering is one of the research areas of fastest growing development, supported by the exponential growth in the number of publications in the most important scientific journals. The progress in this interdisciplinary area is precisely because of the cooperative labors of chemists, engineers, biologists, and others who have turned their efforts to the development of new polymeric materials with specific properties for the regeneration of tissues and especially those with applications in regeneration of bone tissue. The materials used in this application must meet a large number of requirements, among which may be noted adequate biodegradability according to the time required for regeneration of tissue, mechanical properties for the intended application, biocompatibility (adhesion, proliferation, and differentiation of osteoblasts), osteoinduction, and no cytotoxicity. This chapter presents the main developments in the area of biodegradable biomaterials, their features, and more relevant properties, currently developed for bone tissue engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allo BA, Costa DO, Dixon SJ, Mequanint K, Rizkalla AS (2012) Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J Funct Biomater 3:432–463CrossRef Allo BA, Costa DO, Dixon SJ, Mequanint K, Rizkalla AS (2012) Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J Funct Biomater 3:432–463CrossRef
Zurück zum Zitat Anseth KS, Shastri VR, Langer R (1999) Photopolymerizable degradable polyanhydrides with osteocompatibility. Nat Biotechnol 17:156–159CrossRef Anseth KS, Shastri VR, Langer R (1999) Photopolymerizable degradable polyanhydrides with osteocompatibility. Nat Biotechnol 17:156–159CrossRef
Zurück zum Zitat Arakawa C, Ng R, Tan S, Kim S, Wu B, Lee M (2017) Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. J Tissue Eng Regen Med 11:164–174CrossRef Arakawa C, Ng R, Tan S, Kim S, Wu B, Lee M (2017) Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. J Tissue Eng Regen Med 11:164–174CrossRef
Zurück zum Zitat Aramwit P, Kanokpanont S, De-Eknamkul W, Srichana T (2009) Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng 107:556–561CrossRef Aramwit P, Kanokpanont S, De-Eknamkul W, Srichana T (2009) Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng 107:556–561CrossRef
Zurück zum Zitat Aravamudhan A1, Ramos DM, Nip J, Harmon MD, James R, Deng M, Laurencin CT, Yu X, Kumbar SG (2013) Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. J Biomed Nanotechnol 9:719–731CrossRef Aravamudhan A1, Ramos DM, Nip J, Harmon MD, James R, Deng M, Laurencin CT, Yu X, Kumbar SG (2013) Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. J Biomed Nanotechnol 9:719–731CrossRef
Zurück zum Zitat Attawia MA, Uhrich KE, Botchwey E, Fan M, Langer R, Laurencin CT (1995) Cytotoxocity testing of poly(anhydride) for orthopaedic applications. J Biomed Mater Res 29:1233–1240CrossRef Attawia MA, Uhrich KE, Botchwey E, Fan M, Langer R, Laurencin CT (1995) Cytotoxocity testing of poly(anhydride) for orthopaedic applications. J Biomed Mater Res 29:1233–1240CrossRef
Zurück zum Zitat Azami M, Samadikuchaksaraei A, Poursamar SA (2010) Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Int J Artif Organs 33:86–95 Azami M, Samadikuchaksaraei A, Poursamar SA (2010) Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Int J Artif Organs 33:86–95
Zurück zum Zitat Bae MS, Yang DH, Lee JB, Heo DN, Kwon YD, Youn IC, Choi K, Hong JH, Kim GT, Choi YS, Hwang EH, Kwon IK (2011) Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials 32:8161–8171CrossRef Bae MS, Yang DH, Lee JB, Heo DN, Kwon YD, Youn IC, Choi K, Hong JH, Kim GT, Choi YS, Hwang EH, Kwon IK (2011) Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials 32:8161–8171CrossRef
Zurück zum Zitat Bae MS, Ohe JY, Lee JB, Heo DN, Byun W, Bae H, Kwon YD, Kwon IK (2014) Photocured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone 59:189–198CrossRef Bae MS, Ohe JY, Lee JB, Heo DN, Byun W, Bae H, Kwon YD, Kwon IK (2014) Photocured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone 59:189–198CrossRef
Zurück zum Zitat Belluzo MS, Medina LF, Cortizo AM, Cortizo MS (2016) Ultrasonic compatibilization of polyelectrolyte complex based on polysaccharides for biomedical applications. Ultrason Sonochem 30:1–8CrossRef Belluzo MS, Medina LF, Cortizo AM, Cortizo MS (2016) Ultrasonic compatibilization of polyelectrolyte complex based on polysaccharides for biomedical applications. Ultrason Sonochem 30:1–8CrossRef
Zurück zum Zitat Bendtsen ST, Wei M (2015) Synthesis and characterization of a novel injectable alginate–collagen–hydroxyapatite hydrogel for bone tissue regeneration. J Mater Chem B 3:3081–3090CrossRef Bendtsen ST, Wei M (2015) Synthesis and characterization of a novel injectable alginate–collagen–hydroxyapatite hydrogel for bone tissue regeneration. J Mater Chem B 3:3081–3090CrossRef
Zurück zum Zitat Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M (2014) Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold. Biomed Res Int 2014:146723CrossRef Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M (2014) Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold. Biomed Res Int 2014:146723CrossRef
Zurück zum Zitat Bornes TD, Jomha NM, Mulet-Sierra A, Adesida AB (2015) Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds. Stem Cell Res Ther 6:84CrossRef Bornes TD, Jomha NM, Mulet-Sierra A, Adesida AB (2015) Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds. Stem Cell Res Ther 6:84CrossRef
Zurück zum Zitat Chan WP, Kung FC, Kuo YL, Yang MC, Lai WF (2015) Alginate/Poly(γ-glutamic Acid) base biocompatible gel for bone tissue engineering. Biomed Res Int 2015:185841 Chan WP, Kung FC, Kuo YL, Yang MC, Lai WF (2015) Alginate/Poly(γ-glutamic Acid) base biocompatible gel for bone tissue engineering. Biomed Res Int 2015:185841
Zurück zum Zitat Chatzinikolaidou M, Rekstyte S, Danilevicius P, Pontikoglou C, Papadaki H, Farsari M, Vamvakaki M (2015) Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic-inorganic composite scaffolds for bone repair. Mater Sci Eng C Mater Biol Appl 48:301–309CrossRef Chatzinikolaidou M, Rekstyte S, Danilevicius P, Pontikoglou C, Papadaki H, Farsari M, Vamvakaki M (2015) Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic-inorganic composite scaffolds for bone repair. Mater Sci Eng C Mater Biol Appl 48:301–309CrossRef
Zurück zum Zitat Chen S, Nakamoto T, Kawazoe N, Chen G (2015) Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds. Biomaterials 73:23–31CrossRef Chen S, Nakamoto T, Kawazoe N, Chen G (2015) Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds. Biomaterials 73:23–31CrossRef
Zurück zum Zitat Chu CC (1989) In: Williams DF (ed) Biocompatibility of degradable polymers. CRC Press, Boca Raton Chu CC (1989) In: Williams DF (ed) Biocompatibility of degradable polymers. CRC Press, Boca Raton
Zurück zum Zitat Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering-a review. Carbohydr Polym 92:1262–1279CrossRef Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering-a review. Carbohydr Polym 92:1262–1279CrossRef
Zurück zum Zitat Cortizo MS, Molinuevo MS, Cortizo AM (2008) Biocompatibility and biodegradation of polyesterand polyfumarate based-scaffolds for bone tissue engineering. J Tissue Eng Regen Med 2:33–42CrossRef Cortizo MS, Molinuevo MS, Cortizo AM (2008) Biocompatibility and biodegradation of polyesterand polyfumarate based-scaffolds for bone tissue engineering. J Tissue Eng Regen Med 2:33–42CrossRef
Zurück zum Zitat Cortizo AM, Ruderman G, Correa G, Mogilner IG, Tolosa EJ (2012) Effect of surface topography of collagen scaffolds on cytotoxicity and osteoblast differentiation. J Biomater Tissue Eng 2:125–132CrossRef Cortizo AM, Ruderman G, Correa G, Mogilner IG, Tolosa EJ (2012) Effect of surface topography of collagen scaffolds on cytotoxicity and osteoblast differentiation. J Biomater Tissue Eng 2:125–132CrossRef
Zurück zum Zitat Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev 17:331–347CrossRef Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev 17:331–347CrossRef
Zurück zum Zitat Coury AJ, Levy RJ, Ratner BD, Shoen FJ, Williams DF, Williams RL (2004) Degradation of materials in the biological environment, chapter 6. In: Ratner, Hoffman, Shoen, Lemons (eds) Biomaterials science. Elsevier Ac. Press, San Diego, pp 411–453 Coury AJ, Levy RJ, Ratner BD, Shoen FJ, Williams DF, Williams RL (2004) Degradation of materials in the biological environment, chapter 6. In: Ratner, Hoffman, Shoen, Lemons (eds) Biomaterials science. Elsevier Ac. Press, San Diego, pp 411–453
Zurück zum Zitat Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRef Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRef
Zurück zum Zitat Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, Ray AR, Cho DW, Ghosh S (2015) Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246CrossRef Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, Ray AR, Cho DW, Ghosh S (2015) Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246CrossRef
Zurück zum Zitat Dehghani F, Annabi N (2011) Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol 22:661–666CrossRef Dehghani F, Annabi N (2011) Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol 22:661–666CrossRef
Zurück zum Zitat Dias JM, Lemos PC, Serafim LS, Oliveira C, Eiroa M, Albuquerque MG, Ramos AM, Oliveira R, Reis MA (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci 6:885–906CrossRef Dias JM, Lemos PC, Serafim LS, Oliveira C, Eiroa M, Albuquerque MG, Ramos AM, Oliveira R, Reis MA (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci 6:885–906CrossRef
Zurück zum Zitat Dickinson HR, Hiltner A, Gibbons DF, Anderson JM (1981) Biodegradation of a poly(α-amino acid) hydrogel. I. In vivo. J Biomed Mater Res 15:577–589CrossRef Dickinson HR, Hiltner A, Gibbons DF, Anderson JM (1981) Biodegradation of a poly(α-amino acid) hydrogel. I. In vivo. J Biomed Mater Res 15:577–589CrossRef
Zurück zum Zitat Doi Y, Kanesawa Y, Kawaguchi Y, Kunioka M (1989) Hydrolytic degradation of microbial poly(hydroxyalkanoates). Makromol Chem Rapid Commun 10:227–230CrossRef Doi Y, Kanesawa Y, Kawaguchi Y, Kunioka M (1989) Hydrolytic degradation of microbial poly(hydroxyalkanoates). Makromol Chem Rapid Commun 10:227–230CrossRef
Zurück zum Zitat Dong C, Lv Y (2016) Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 8:42CrossRef Dong C, Lv Y (2016) Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 8:42CrossRef
Zurück zum Zitat Fernández JM, Molinuevo MS, Cortizo AM, McCarthy AD, Cortizo MS (2010) Characterization of poly(ε-caprolactone)/Polyfumarate blends as scaffolds for bone tissue engineering. J Biomat Scie Polym Ed 21:1297–1312CrossRef Fernández JM, Molinuevo MS, Cortizo AM, McCarthy AD, Cortizo MS (2010) Characterization of poly(ε-caprolactone)/Polyfumarate blends as scaffolds for bone tissue engineering. J Biomat Scie Polym Ed 21:1297–1312CrossRef
Zurück zum Zitat Fernández JM, Molinuevo MS, Cortizo MS, Cortizo AM (2011) Development of an osteoconductive PCL–PDIPF–hydroxyapatite composite scaffold for bone tissue engineering. J Tissue Eng Regen Med 5:e126–e135CrossRef Fernández JM, Molinuevo MS, Cortizo MS, Cortizo AM (2011) Development of an osteoconductive PCL–PDIPF–hydroxyapatite composite scaffold for bone tissue engineering. J Tissue Eng Regen Med 5:e126–e135CrossRef
Zurück zum Zitat Fernández JM, Cortizo MS, Cortizo AM (2014) Fumarate/ceramic composite based scaffolds for tissue engineering: evaluation of hydrophylicity, degradability, toxicity and biocompatibility. JBiomatTissue Eng 4:1–8 Fernández JM, Cortizo MS, Cortizo AM (2014) Fumarate/ceramic composite based scaffolds for tissue engineering: evaluation of hydrophylicity, degradability, toxicity and biocompatibility. JBiomatTissue Eng 4:1–8
Zurück zum Zitat Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8:3191–3200CrossRef Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8:3191–3200CrossRef
Zurück zum Zitat Fischer RL, McCoy MG, Grant SA (2012) Electrospinning collagen and hyaluronic acid nanofiber meshes. J Mater Sci Mater Med 23:1645–1654CrossRef Fischer RL, McCoy MG, Grant SA (2012) Electrospinning collagen and hyaluronic acid nanofiber meshes. J Mater Sci Mater Med 23:1645–1654CrossRef
Zurück zum Zitat Freddi G, Romanò M, Massafra MR, Tsukada M (1995) Silk fibroin/cellulose blend films: preparation, structure, and physical properties. J Appl Polym Sci 56:1537–1545CrossRef Freddi G, Romanò M, Massafra MR, Tsukada M (1995) Silk fibroin/cellulose blend films: preparation, structure, and physical properties. J Appl Polym Sci 56:1537–1545CrossRef
Zurück zum Zitat Fredriksson C, Hedhammar M, Feinstein R, Nordling K, Kratz G, Johansson J, Huss F, Rising A (2009) Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2:1908–1922CrossRef Fredriksson C, Hedhammar M, Feinstein R, Nordling K, Kratz G, Johansson J, Huss F, Rising A (2009) Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2:1908–1922CrossRef
Zurück zum Zitat Freier T (2006) Biopolyesters in tissue engineering applications. Adv Polym Sci 203:1–61CrossRef Freier T (2006) Biopolyesters in tissue engineering applications. Adv Polym Sci 203:1–61CrossRef
Zurück zum Zitat Galperin A, Oldinski RA, Florczyk SJ, Bryers JD, Zhang M, Ratner BD (2013) Integrated bi-layered scaffold for osteochondral tissue engineering. Adv Healthc Mater 2:872–883CrossRef Galperin A, Oldinski RA, Florczyk SJ, Bryers JD, Zhang M, Ratner BD (2013) Integrated bi-layered scaffold for osteochondral tissue engineering. Adv Healthc Mater 2:872–883CrossRef
Zurück zum Zitat Gogolewski S, Jovanovic M, Perren SM, Dillon JG, Hughes MK (1993) You have full text access to this content tissue response and in vivo degradation of selected polyhydroxyacids: Polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res 27:1135–1148CrossRef Gogolewski S, Jovanovic M, Perren SM, Dillon JG, Hughes MK (1993) You have full text access to this content tissue response and in vivo degradation of selected polyhydroxyacids: Polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res 27:1135–1148CrossRef
Zurück zum Zitat Gomez de Oliveira Barud H, da Silva RR, da Silva Barud H, Tercjak A, Gutierrez J, Lustri WR, de Oliveira OB Jr, Ribeiro SJ (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420CrossRef Gomez de Oliveira Barud H, da Silva RR, da Silva Barud H, Tercjak A, Gutierrez J, Lustri WR, de Oliveira OB Jr, Ribeiro SJ (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420CrossRef
Zurück zum Zitat Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827CrossRef Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827CrossRef
Zurück zum Zitat Goonoo N, Bhaw-Luximon A, Passanha P, Esteves SR, Jhurry D (2016) Third generation poly(hydroxyacid) composite scaffolds for tissue engineering. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33674 Goonoo N, Bhaw-Luximon A, Passanha P, Esteves SR, Jhurry D (2016) Third generation poly(hydroxyacid) composite scaffolds for tissue engineering. J Biomed Mater Res B Appl Biomater. doi:10.​1002/​jbm.​b.​33674
Zurück zum Zitat Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114CrossRef Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114CrossRef
Zurück zum Zitat Gorgieva S, Kokol V (2011) Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives, Chapter 2. In: Pignatello R (ed) Biomaterials applications for nanomedicine. InTech, Rijeka, pp 17–52 Gorgieva S, Kokol V (2011) Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives, Chapter 2. In: Pignatello R (ed) Biomaterials applications for nanomedicine. InTech, Rijeka, pp 17–52
Zurück zum Zitat Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. European Cells and Materials 5:1–16CrossRef Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. European Cells and Materials 5:1–16CrossRef
Zurück zum Zitat Gunatillake PA, Adhikari R (2011) Biodegradable polyurethanes: design, synthesis, properties and potential applications, Chapter 9. In: Felto GP (ed) Biodegradable polymers: processing, degradation and applications. Nova Science Publishers, Hauppauge, pp 431–470 Gunatillake PA, Adhikari R (2011) Biodegradable polyurethanes: design, synthesis, properties and potential applications, Chapter 9. In: Felto GP (ed) Biodegradable polymers: processing, degradation and applications. Nova Science Publishers, Hauppauge, pp 431–470
Zurück zum Zitat Guo B, Lei B, Li P, Ma PX (2015) Functionalized scaffolds to enhance tissue regeneration. Regen Biomater 2015:47–57CrossRef Guo B, Lei B, Li P, Ma PX (2015) Functionalized scaffolds to enhance tissue regeneration. Regen Biomater 2015:47–57CrossRef
Zurück zum Zitat Hafeman AE, Zienkiewicz KJ, Zachman AL, Sung HJ, Nanney LB, Davidson JM, Guelcher SA (2011) Characterization of the degradation mechanisms of lysine-derived aliphatic poly(ester urethane) scaffolds. Biomaterials 32:419–429CrossRef Hafeman AE, Zienkiewicz KJ, Zachman AL, Sung HJ, Nanney LB, Davidson JM, Guelcher SA (2011) Characterization of the degradation mechanisms of lysine-derived aliphatic poly(ester urethane) scaffolds. Biomaterials 32:419–429CrossRef
Zurück zum Zitat Hardy JG, Torres-Rendon JG, Leal-Egaña A, Walther A, Schlaad H, Cölfen H, Scheibel TR (2016) Biomineralization of engineered spider silk protein-based composite materials for bone tissue engineering. Materials 9:560CrossRef Hardy JG, Torres-Rendon JG, Leal-Egaña A, Walther A, Schlaad H, Cölfen H, Scheibel TR (2016) Biomineralization of engineered spider silk protein-based composite materials for bone tissue engineering. Materials 9:560CrossRef
Zurück zum Zitat Hayati AN, Rezaie HR, Hosseinalipour SM (2011) Preparation of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater Lett 65:736–739CrossRef Hayati AN, Rezaie HR, Hosseinalipour SM (2011) Preparation of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater Lett 65:736–739CrossRef
Zurück zum Zitat He J, Wang Y, Cui S, Gao Y, Wang S (2010) Structure and properties of silk fibroin/carboxymethyl chitosan blend films. Polym Bull 65:395–409CrossRef He J, Wang Y, Cui S, Gao Y, Wang S (2010) Structure and properties of silk fibroin/carboxymethyl chitosan blend films. Polym Bull 65:395–409CrossRef
Zurück zum Zitat He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Zhang X, Deng Y (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules 15:618–627CrossRef He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Zhang X, Deng Y (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules 15:618–627CrossRef
Zurück zum Zitat He J-X, Tan W-L, Han Q-M, Cui S-Z, Shao W, Sang F (2016) Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering. J Mater Sci 51:4399–4410CrossRef He J-X, Tan W-L, Han Q-M, Cui S-Z, Shao W, Sang F (2016) Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering. J Mater Sci 51:4399–4410CrossRef
Zurück zum Zitat Hesaraki S, Nezafati N (2014) In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements. Bioprocess Biosyst Eng 37:1507–1516CrossRef Hesaraki S, Nezafati N (2014) In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements. Bioprocess Biosyst Eng 37:1507–1516CrossRef
Zurück zum Zitat Horch RA, Shahid N, Mistry AS, Timmer MD, Mikos AG, Barron AR (2004) Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules 5:1990–1998CrossRef Horch RA, Shahid N, Mistry AS, Timmer MD, Mikos AG, Barron AR (2004) Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules 5:1990–1998CrossRef
Zurück zum Zitat Huang Y, Zhang X, Wua A, Xu H (2016) An injectable nano-hydroxyapatite (n-HA)/glycol chitosan (G-CS)/hyaluronic acid (HyA) composite hydrogel for bone tissue engineering. RSC Adv 6:33529–33536CrossRef Huang Y, Zhang X, Wua A, Xu H (2016) An injectable nano-hydroxyapatite (n-HA)/glycol chitosan (G-CS)/hyaluronic acid (HyA) composite hydrogel for bone tissue engineering. RSC Adv 6:33529–33536CrossRef
Zurück zum Zitat Humenik M, Smith AM, Scheibel T (2011) Recombinant spider silks-biopolymers with potential for future applications. Polymers 3:640–661CrossRef Humenik M, Smith AM, Scheibel T (2011) Recombinant spider silks-biopolymers with potential for future applications. Polymers 3:640–661CrossRef
Zurück zum Zitat Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef
Zurück zum Zitat Isikli C, Hasirci V, Hasirci N (2012) Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. J Tissue Eng Regen Med 6:135–143CrossRef Isikli C, Hasirci V, Hasirci N (2012) Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. J Tissue Eng Regen Med 6:135–143CrossRef
Zurück zum Zitat Jiang M, Liu Q, Zhang Q, Ye C, Zhou G (2012) You have full text access to this content A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. J Polym Sci Part A: Polym Chem 50:1026–1036CrossRef Jiang M, Liu Q, Zhang Q, Ye C, Zhou G (2012) You have full text access to this content A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. J Polym Sci Part A: Polym Chem 50:1026–1036CrossRef
Zurück zum Zitat Kang Z, Zhang X, Chen Y, Akram MY, Nie J, Zhu X (2017) Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Mater Sci Eng C 70:1125–1131CrossRef Kang Z, Zhang X, Chen Y, Akram MY, Nie J, Zhu X (2017) Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Mater Sci Eng C 70:1125–1131CrossRef
Zurück zum Zitat Kapoor S, Kundu SC (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32CrossRef Kapoor S, Kundu SC (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32CrossRef
Zurück zum Zitat Kim HL, Jung GY, Yoon JH, Han JS, Park YJ, Kim DG, Zhang M, Kim DJ (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 54:20–25CrossRef Kim HL, Jung GY, Yoon JH, Han JS, Park YJ, Kim DG, Zhang M, Kim DJ (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 54:20–25CrossRef
Zurück zum Zitat Koh L-D, Cheng Y, Teng Y-P, Khin Y-W, Loh X-J, Tee S-Y, Low M, Ye E, Yu H-D, Zhang Y-W, Han M-Y (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110CrossRef Koh L-D, Cheng Y, Teng Y-P, Khin Y-W, Loh X-J, Tee S-Y, Low M, Ye E, Yu H-D, Zhang Y-W, Han M-Y (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110CrossRef
Zurück zum Zitat Ku Y, Shim IK, Lee JY, Park YJ, Rhee S-H, Nam SH, Park JB, Chung CP, Lee SJ (2009) Chitosan/poly(l-lactic acid) multilayered membrane for guided tissue regeneration. J Biomed Mater Res A 90:766–772CrossRef Ku Y, Shim IK, Lee JY, Park YJ, Rhee S-H, Nam SH, Park JB, Chung CP, Lee SJ (2009) Chitosan/poly(l-lactic acid) multilayered membrane for guided tissue regeneration. J Biomed Mater Res A 90:766–772CrossRef
Zurück zum Zitat Lalwani G, Henslee AM, Farshid B, Lin L, Kasper FK, Qin YX, Mikos AG, Sitharaman B (2013) Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules 14:900–909CrossRef Lalwani G, Henslee AM, Farshid B, Lin L, Kasper FK, Qin YX, Mikos AG, Sitharaman B (2013) Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules 14:900–909CrossRef
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef
Zurück zum Zitat Lastra ML, Molinuevo MS, Cortizo AM, Cortizo MS (2016) Fumarate copolymer–chitosan cross-linked scaffold directed to osteochondrogenic tissue engineering. Macromol Biosci. doi:10.1002/mabi.201600219 Lastra ML, Molinuevo MS, Cortizo AM, Cortizo MS (2016) Fumarate copolymer–chitosan cross-linked scaffold directed to osteochondrogenic tissue engineering. Macromol Biosci. doi:10.​1002/​mabi.​201600219
Zurück zum Zitat Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRef Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRef
Zurück zum Zitat Lee JM, Kim JH, Lee OJ, Park CH (2013) The fixation effect of a silk fibroin-bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study. JAMA Otolaryngol Head Neck Surg 139:629–635CrossRef Lee JM, Kim JH, Lee OJ, Park CH (2013) The fixation effect of a silk fibroin-bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study. JAMA Otolaryngol Head Neck Surg 139:629–635CrossRef
Zurück zum Zitat Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E, Roland M, Rollman B, Speiser P (1984) Degradation of poly(isobutylcyanoacrylate) nanoparticles. Biomaterials 5:65–68CrossRef Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E, Roland M, Rollman B, Speiser P (1984) Degradation of poly(isobutylcyanoacrylate) nanoparticles. Biomaterials 5:65–68CrossRef
Zurück zum Zitat Leonard F, Kulkarni RK, Brandes G, Nelson J, Cameron JJ (1966) Synthesis and degradation of poly(alkylα-cyanoacrylates). J Polym Sci 10:259–272 Leonard F, Kulkarni RK, Brandes G, Nelson J, Cameron JJ (1966) Synthesis and degradation of poly(alkylα-cyanoacrylates). J Polym Sci 10:259–272
Zurück zum Zitat Leong KW, Brott BC, Langer RJ (1985) Bioerodible polyanhydrides as drug-carrier matrices. I: characterization, degradation, and release characteristics. Biomed Mater Res 19:941–955CrossRef Leong KW, Brott BC, Langer RJ (1985) Bioerodible polyanhydrides as drug-carrier matrices. I: characterization, degradation, and release characteristics. Biomed Mater Res 19:941–955CrossRef
Zurück zum Zitat Levengood SL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B Mater Biol Med 2:3161–3184CrossRef Levengood SL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B Mater Biol Med 2:3161–3184CrossRef
Zurück zum Zitat Liuyun J, Yubao L, Chengdong X (2009) Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J Biomed Sci 16:65CrossRef Liuyun J, Yubao L, Chengdong X (2009) Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J Biomed Sci 16:65CrossRef
Zurück zum Zitat Logith Kumar R, Keshav Narayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym 151:172–188CrossRef Logith Kumar R, Keshav Narayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym 151:172–188CrossRef
Zurück zum Zitat Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–198CrossRef Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–198CrossRef
Zurück zum Zitat Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030CrossRef Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030CrossRef
Zurück zum Zitat Martin C, Winet H, Bao JY (1996) Acidity near eroding polylactidepolyglycolidein vitro and in vivo in rabbit tibial bone chambers. Biomaterials 17:2373–2380CrossRef Martin C, Winet H, Bao JY (1996) Acidity near eroding polylactidepolyglycolidein vitro and in vivo in rabbit tibial bone chambers. Biomaterials 17:2373–2380CrossRef
Zurück zum Zitat Maté Sánchez de Val JE, Calvo Guirado JL, Ramírez Fernández MP, Delgado Ruiz RA, Mazón P, De Aza PN (2015) In vivo behavior of hydroxyapatite/β-TCP/collagen scaffold in animal model. Histological, histomorphometrical, radiological, and SEM analysis at 15, 30, and 60 days. Clin Oral Implants Res 102:1037–1046 Maté Sánchez de Val JE, Calvo Guirado JL, Ramírez Fernández MP, Delgado Ruiz RA, Mazón P, De Aza PN (2015) In vivo behavior of hydroxyapatite/β-TCP/collagen scaffold in animal model. Histological, histomorphometrical, radiological, and SEM analysis at 15, 30, and 60 days. Clin Oral Implants Res 102:1037–1046
Zurück zum Zitat Meghezi S, Seifu DG, Bono N, Unsworth L, Mequanint K, Mantovani D (2015) Engineering 3D cellularized collagen gels for vascular. Tissue regeneration. J Vis Exp 100:1–12 Meghezi S, Seifu DG, Bono N, Unsworth L, Mequanint K, Mantovani D (2015) Engineering 3D cellularized collagen gels for vascular. Tissue regeneration. J Vis Exp 100:1–12
Zurück zum Zitat Melke J, Midha S, Ghosh S, Ito K, Hofmann S (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–16CrossRef Melke J, Midha S, Ghosh S, Ito K, Hofmann S (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–16CrossRef
Zurück zum Zitat Mienaltowski MJ, Birk D (2014) Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol 802:5–29CrossRef Mienaltowski MJ, Birk D (2014) Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol 802:5–29CrossRef
Zurück zum Zitat Mkhabela VJ, Ray SS (2014) Poly(ε-caprolactone) nanocomposite scaffolds for tissue engineering: a brief overview. J Nanosci Nanotechnol 14:535–545CrossRef Mkhabela VJ, Ray SS (2014) Poly(ε-caprolactone) nanocomposite scaffolds for tissue engineering: a brief overview. J Nanosci Nanotechnol 14:535–545CrossRef
Zurück zum Zitat Mohammadi Y, Soleimani M, Fallahi-sichani M, Gazme A, Haddadiasl V, Arefian E, Kiani J, Moradi R, Atashi A, Ahmadbeigi N (2007) Nanofibrous poly(ε-caprolactone)/poly(vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells. Int J Artif 30:204–211 Mohammadi Y, Soleimani M, Fallahi-sichani M, Gazme A, Haddadiasl V, Arefian E, Kiani J, Moradi R, Atashi A, Ahmadbeigi N (2007) Nanofibrous poly(ε-caprolactone)/poly(vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells. Int J Artif 30:204–211
Zurück zum Zitat Mondrinos MJ, Dembzynski R, Lu L, Byrapogu VKC, Wootton DM, Lelkes PI, Zhou J (2006) Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408CrossRef Mondrinos MJ, Dembzynski R, Lu L, Byrapogu VKC, Wootton DM, Lelkes PI, Zhou J (2006) Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408CrossRef
Zurück zum Zitat Murthy N, Wilson S, Sy JC (2012) Biodegradation of polymers. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Amsterdam, Elsevier, pp 547–560CrossRef Murthy N, Wilson S, Sy JC (2012) Biodegradation of polymers. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Amsterdam, Elsevier, pp 547–560CrossRef
Zurück zum Zitat Ngiam M, Liao S, Patil AJ, Cheng Z, Yang F, Gubler MJ, Ramakrishna S, Chan CK (2009) Fabrication of mineralized polymeric nanofibrous composites for bone graft materials. Tissue Eng Part A 15:535–546CrossRef Ngiam M, Liao S, Patil AJ, Cheng Z, Yang F, Gubler MJ, Ramakrishna S, Chan CK (2009) Fabrication of mineralized polymeric nanofibrous composites for bone graft materials. Tissue Eng Part A 15:535–546CrossRef
Zurück zum Zitat Nguyen TB, Lee BT (2014) A combination of biphasic calcium phosphate scaffold with hyaluronic acid-gelatin hydrogel as a new tool for bone regeneration. Tissue Eng Part A 20:1993–2004CrossRef Nguyen TB, Lee BT (2014) A combination of biphasic calcium phosphate scaffold with hyaluronic acid-gelatin hydrogel as a new tool for bone regeneration. Tissue Eng Part A 20:1993–2004CrossRef
Zurück zum Zitat Niranjan R, Koushik C, Saravanan S, Moorthi A, Vairamani M, Selvamurugan N (2013) A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering. Int J Biol Macromol 54:24–29CrossRef Niranjan R, Koushik C, Saravanan S, Moorthi A, Vairamani M, Selvamurugan N (2013) A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering. Int J Biol Macromol 54:24–29CrossRef
Zurück zum Zitat Novotna K, Havelka P, Sopuch T, Kolarova K, Vosmanska V, Lisa V, Svorcik V, Bacakova L (2013) Cellulose-based materials as scaffolds for tissue engineering. Cellulose 20:2263–2278CrossRef Novotna K, Havelka P, Sopuch T, Kolarova K, Vosmanska V, Lisa V, Svorcik V, Bacakova L (2013) Cellulose-based materials as scaffolds for tissue engineering. Cellulose 20:2263–2278CrossRef
Zurück zum Zitat O’Brien F (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14:88–95CrossRef O’Brien F (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14:88–95CrossRef
Zurück zum Zitat Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A (2016) Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. J Mater Sci Mater Med 27:155CrossRef Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A (2016) Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. J Mater Sci Mater Med 27:155CrossRef
Zurück zum Zitat Park ES, Maniar M, Shah J (1996) Effects of model compounds with varying physicochemical properties on erosion of polyanhydride devices. J Control Release 40:111–121CrossRef Park ES, Maniar M, Shah J (1996) Effects of model compounds with varying physicochemical properties on erosion of polyanhydride devices. J Control Release 40:111–121CrossRef
Zurück zum Zitat Park H, Choi B, Nguyen J, Fan J, Shafi S, Klokkevold P, Lee M (2013) Anionic carbohydrate-containing chitosan scaffolds for bone regeneration. Carbohydr Polym 97:587–596CrossRef Park H, Choi B, Nguyen J, Fan J, Shafi S, Klokkevold P, Lee M (2013) Anionic carbohydrate-containing chitosan scaffolds for bone regeneration. Carbohydr Polym 97:587–596CrossRef
Zurück zum Zitat Peter SJ, Nolley JA, Widmer MS, Merwin JE, Yazemski MJ, Yasko AW, Engel PS, Mikos AG (1997) In vitro degradation of a poly(propylene fumarate)/ßtricalciumphosphate composition orthopaedic scaffold. Tissue Eng 3:207–215CrossRef Peter SJ, Nolley JA, Widmer MS, Merwin JE, Yazemski MJ, Yasko AW, Engel PS, Mikos AG (1997) In vitro degradation of a poly(propylene fumarate)/ßtricalciumphosphate composition orthopaedic scaffold. Tissue Eng 3:207–215CrossRef
Zurück zum Zitat Pigossi SC, de Oliveira GJ, Finoti LS, Nepomuceno R, Spolidorio LC, Rossa C Jr, Ribeiro SJ, Saska S, Scarel-Caminaga RM (2015) Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model. J Biomed Mater Res A 103:3397–3406CrossRef Pigossi SC, de Oliveira GJ, Finoti LS, Nepomuceno R, Spolidorio LC, Rossa C Jr, Ribeiro SJ, Saska S, Scarel-Caminaga RM (2015) Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model. J Biomed Mater Res A 103:3397–3406CrossRef
Zurück zum Zitat Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169CrossRef Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169CrossRef
Zurück zum Zitat Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14:15–56CrossRef Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14:15–56CrossRef
Zurück zum Zitat Qiu H, Yang J, Kodali P, Koh J, Ameer GA (2006) Citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials 27:5845–5854CrossRef Qiu H, Yang J, Kodali P, Koh J, Ameer GA (2006) Citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials 27:5845–5854CrossRef
Zurück zum Zitat Raghavendran HRB, Puvaneswary S, Talebian S, Murali MR, Naveen SV, Krishnamurithy G, McKean R, Kamarul T (2014) A comparative study on in vitro osteogenic priming potential of electron spun scaffold PLLA/HA/Col, PLLA/HA, and PLLA/Col for tissue engineering application. PLoS One 9:e104389CrossRef Raghavendran HRB, Puvaneswary S, Talebian S, Murali MR, Naveen SV, Krishnamurithy G, McKean R, Kamarul T (2014) A comparative study on in vitro osteogenic priming potential of electron spun scaffold PLLA/HA/Col, PLLA/HA, and PLLA/Col for tissue engineering application. PLoS One 9:e104389CrossRef
Zurück zum Zitat Rașoga O, Sima L, Chirițoiu M, Popescu-Pelin G, Fufă O, Grumezescu V, Socol M, Stănculescu A, Zgură I, Socol G (2017) Biocomposite coatings based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium phosphates obtained by MAPLE for bone tissue engineering. Appl Surf Sci 417:204–212. doi:10.1016/j.apsusc.2017.01.205 CrossRef Rașoga O, Sima L, Chirițoiu M, Popescu-Pelin G, Fufă O, Grumezescu V, Socol M, Stănculescu A, Zgură I, Socol G (2017) Biocomposite coatings based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium phosphates obtained by MAPLE for bone tissue engineering. Appl Surf Sci 417:204–212. doi:10.​1016/​j.​apsusc.​2017.​01.​205 CrossRef
Zurück zum Zitat Rau JV, Antoniac I, Cama G, Komlev VS, Ravaglioli A (2016) Bioactive materials for bone tissue engineering. Biomed Res Int 2016:3741428; 1–3CrossRef Rau JV, Antoniac I, Cama G, Komlev VS, Ravaglioli A (2016) Bioactive materials for bone tissue engineering. Biomed Res Int 2016:3741428; 1–3CrossRef
Zurück zum Zitat Razak SIA, Sharif NFA, Rahman WAWA (2012) Biodegradable polymers and their bone applications: a review. Int J Basic Appl Sci 12:31–49 Razak SIA, Sharif NFA, Rahman WAWA (2012) Biodegradable polymers and their bone applications: a review. Int J Basic Appl Sci 12:31–49
Zurück zum Zitat Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef
Zurück zum Zitat Rhodes NP, Hunt JA, Longinotti C, Pavesio A (2011) In vivo characterization of Hyalonect, a novel biodegradable surgical mesh. J Surg Res 168:31–38CrossRef Rhodes NP, Hunt JA, Longinotti C, Pavesio A (2011) In vivo characterization of Hyalonect, a novel biodegradable surgical mesh. J Surg Res 168:31–38CrossRef
Zurück zum Zitat Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Review. Macromol Biosci 4:743–765CrossRef Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Review. Macromol Biosci 4:743–765CrossRef
Zurück zum Zitat Samadikuchaksaraei A, Gholipourmalekabadi M, Erfani Ezadyar E, Azami M, Mozafari M, Johari B, Kargozar S, Jameie SB, Korourian A, Seifalian AM (2016) Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. J Biomed Mater Res A 104:2001–2010CrossRef Samadikuchaksaraei A, Gholipourmalekabadi M, Erfani Ezadyar E, Azami M, Mozafari M, Johari B, Kargozar S, Jameie SB, Korourian A, Seifalian AM (2016) Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. J Biomed Mater Res A 104:2001–2010CrossRef
Zurück zum Zitat Sangkert S, Meesane J, Kamonmattayakul S, Chai WL (2016) Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: morphological structures and biofunctionalities. Mater Sci Eng C 58:1138–1149CrossRef Sangkert S, Meesane J, Kamonmattayakul S, Chai WL (2016) Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: morphological structures and biofunctionalities. Mater Sci Eng C 58:1138–1149CrossRef
Zurück zum Zitat Santos CA, Freedman BD, Leach KJ, Press DL, Scarpulla M, Mathiowitz E (1999) Poly(fumaric–co-sebacic anhydride): a degradation study as evaluated by FTIR, DSC, GPC and X-ray diffraction. J Control Release 60:11–22CrossRef Santos CA, Freedman BD, Leach KJ, Press DL, Scarpulla M, Mathiowitz E (1999) Poly(fumaric–co-sebacic anhydride): a degradation study as evaluated by FTIR, DSC, GPC and X-ray diffraction. J Control Release 60:11–22CrossRef
Zurück zum Zitat Saravanan S, Sameera DK, Moorthi A, Selvamurugan N (2013) Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int J Biol Macromol 62:481–486CrossRef Saravanan S, Sameera DK, Moorthi A, Selvamurugan N (2013) Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int J Biol Macromol 62:481–486CrossRef
Zurück zum Zitat Sarikaya B, Aydin HM (2015) Collagen/beta-tricalcium phosphate based synthetic bone grafts via dehydrothermal processing. Biomed Res Int 2015:576532CrossRef Sarikaya B, Aydin HM (2015) Collagen/beta-tricalcium phosphate based synthetic bone grafts via dehydrothermal processing. Biomed Res Int 2015:576532CrossRef
Zurück zum Zitat Sarkar SK, Lee BT (2015) Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med 30:279–293CrossRef Sarkar SK, Lee BT (2015) Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med 30:279–293CrossRef
Zurück zum Zitat Saska S, Barud HS, Gaspar AM, Marchetto R, Ribeiro SJ, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:175362CrossRef Saska S, Barud HS, Gaspar AM, Marchetto R, Ribeiro SJ, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:175362CrossRef
Zurück zum Zitat Schacht K, Jüngst T, Schweinlin M, Ewald A, Groll J, Scheibel T (2015) Biofabrication of cell-loaded 3D spider silk constructs. Angew Chem 54:2816–2820CrossRef Schacht K, Jüngst T, Schweinlin M, Ewald A, Groll J, Scheibel T (2015) Biofabrication of cell-loaded 3D spider silk constructs. Angew Chem 54:2816–2820CrossRef
Zurück zum Zitat Schante CE, Zuber G, Herlin C, Vandamme TF (2012) Improvement of hyaluronic acid enzymatic stability by the grafting of amino-acids. Carbohydr Polym 87:2211–2216CrossRef Schante CE, Zuber G, Herlin C, Vandamme TF (2012) Improvement of hyaluronic acid enzymatic stability by the grafting of amino-acids. Carbohydr Polym 87:2211–2216CrossRef
Zurück zum Zitat Schubert MA, Wiggins MJ, Anderson JM, Hiltner A (1997) Role of oxygen in biodegradation of poly(etherurethaneurea) elastomers. J Biomed Mater Res 34:519–530CrossRef Schubert MA, Wiggins MJ, Anderson JM, Hiltner A (1997) Role of oxygen in biodegradation of poly(etherurethaneurea) elastomers. J Biomed Mater Res 34:519–530CrossRef
Zurück zum Zitat Smith R, Oliver C, Williams DF (1987) The enzymatic degradation of polymers in vitro. J Biomed Mater Res 21:991–1003CrossRef Smith R, Oliver C, Williams DF (1987) The enzymatic degradation of polymers in vitro. J Biomed Mater Res 21:991–1003CrossRef
Zurück zum Zitat Sun J, Tan H (2013) Review alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309CrossRef Sun J, Tan H (2013) Review alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309CrossRef
Zurück zum Zitat Sun Y, Shao Z, Ma M, Hu P, Liu Y, Yu T (1997) Acrylic polymer-silk fibroin blend fibers. J Appl Polym Sci 65(5):959–966CrossRef Sun Y, Shao Z, Ma M, Hu P, Liu Y, Yu T (1997) Acrylic polymer-silk fibroin blend fibers. J Appl Polym Sci 65(5):959–966CrossRef
Zurück zum Zitat Sun K, Li H, Li R, Nian Z, Li D, Xu C (2015) Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. Eur J Orthop Surg Traumatol 25:243–249CrossRef Sun K, Li H, Li R, Nian Z, Li D, Xu C (2015) Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. Eur J Orthop Surg Traumatol 25:243–249CrossRef
Zurück zum Zitat Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi LM, Levinson D, Rouabhia M (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2:61CrossRef Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi LM, Levinson D, Rouabhia M (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2:61CrossRef
Zurück zum Zitat Teulé F, Miao Y-G, Sohn B-H, Kim Y-S, Hull JJ, Fraser MJ (2012) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci 109:923–928CrossRef Teulé F, Miao Y-G, Sohn B-H, Kim Y-S, Hull JJ, Fraser MJ (2012) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci 109:923–928CrossRef
Zurück zum Zitat Thurber AE, Omenetto FG, Kaplan DL (2015) In vivo bioresponses to silk proteins. Biomaterials 71:155–157CrossRef Thurber AE, Omenetto FG, Kaplan DL (2015) In vivo bioresponses to silk proteins. Biomaterials 71:155–157CrossRef
Zurück zum Zitat Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280CrossRef Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280CrossRef
Zurück zum Zitat Uhrich KE, Gupta A, Thomas TT, Laurencin C, Langer R (1995) Synthesis and characterization of degradablepolyanhydrides. Macromolecules 28:2148–2193CrossRef Uhrich KE, Gupta A, Thomas TT, Laurencin C, Langer R (1995) Synthesis and characterization of degradablepolyanhydrides. Macromolecules 28:2148–2193CrossRef
Zurück zum Zitat Uhrich KE, Thomas TT, Laurencin CT, Langer R (1997) In vitro degradation characteristics of poly(anhydride-imide) containing trimellitylimidoglycine. J Appl Polym Sci 63:1401–1411CrossRef Uhrich KE, Thomas TT, Laurencin CT, Langer R (1997) In vitro degradation characteristics of poly(anhydride-imide) containing trimellitylimidoglycine. J Appl Polym Sci 63:1401–1411CrossRef
Zurück zum Zitat Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1314CrossRef Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1314CrossRef
Zurück zum Zitat Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P (2003) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 55:519–548CrossRef Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P (2003) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 55:519–548CrossRef
Zurück zum Zitat Venkatesan J, Pallela R, Kim S-K (2014) Applications of carbon nanomaterials in bone tissue engineering. J Biomed Nanotechnol 10:3105–3123CrossRef Venkatesan J, Pallela R, Kim S-K (2014) Applications of carbon nanomaterials in bone tissue engineering. J Biomed Nanotechnol 10:3105–3123CrossRef
Zurück zum Zitat Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281CrossRef Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281CrossRef
Zurück zum Zitat Wahl DA, Czernuszka JT (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 28:43–56CrossRef Wahl DA, Czernuszka JT (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 28:43–56CrossRef
Zurück zum Zitat Williams DF (1989) Polymer degradation in biological environments, Chapter 5. In: Allen G, Aggarwal SL, Russo S (eds) Comprehensive polymer science, vol 6. Pergamon Press, Oxford, UK Williams DF (1989) Polymer degradation in biological environments, Chapter 5. In: Allen G, Aggarwal SL, Russo S (eds) Comprehensive polymer science, vol 6. Pergamon Press, Oxford, UK
Zurück zum Zitat Winet H, Bao JY (1997) Comparative bone healing near eroding polylactide-polyglycolide implants of differing crystallinity in rabbit tibial bone chambers. J Biomater Sci Polym Edn 8:517–532CrossRef Winet H, Bao JY (1997) Comparative bone healing near eroding polylactide-polyglycolide implants of differing crystallinity in rabbit tibial bone chambers. J Biomater Sci Polym Edn 8:517–532CrossRef
Zurück zum Zitat Yamada S, Yamamoto K, Ikeda T, Yanagiguchi K, Hayashi Y (2014) Potency of fish collagen as a scaffold for regenerative medicine. Biomed Res Int 2014:302932CrossRef Yamada S, Yamamoto K, Ikeda T, Yanagiguchi K, Hayashi Y (2014) Potency of fish collagen as a scaffold for regenerative medicine. Biomed Res Int 2014:302932CrossRef
Zurück zum Zitat Yan L-P, Salgado AJ, Oliveira JM, Oliveira AL, Reis RL (2013) De novo bone formation on macro/microporous silk and silk/nano-sized calcium phosphate scaffolds. J Bioact Compat Polym 28:439–452CrossRef Yan L-P, Salgado AJ, Oliveira JM, Oliveira AL, Reis RL (2013) De novo bone formation on macro/microporous silk and silk/nano-sized calcium phosphate scaffolds. J Bioact Compat Polym 28:439–452CrossRef
Zurück zum Zitat Yao D, Liu H, Fan Y (2016) Silk scaffolds for musculoskeletal tissue engineering. Exp Biol Med 241:238–245CrossRef Yao D, Liu H, Fan Y (2016) Silk scaffolds for musculoskeletal tissue engineering. Exp Biol Med 241:238–245CrossRef
Zurück zum Zitat Yu H-S, Won J-E, Jin G-Z, Kim H-W (2012) Construction of mesenchymal stem cell-containing collagen gel with a macrochanneled polycaprolactone scaffold and the flow perfusion culturing for bone tissue engineering. Biores Open Access 1:124–136CrossRef Yu H-S, Won J-E, Jin G-Z, Kim H-W (2012) Construction of mesenchymal stem cell-containing collagen gel with a macrochanneled polycaprolactone scaffold and the flow perfusion culturing for bone tissue engineering. Biores Open Access 1:124–136CrossRef
Zurück zum Zitat Yu Z, An B, Ramshaw JA, Brodsky B (2014) Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 186:451–461CrossRef Yu Z, An B, Ramshaw JA, Brodsky B (2014) Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 186:451–461CrossRef
Zurück zum Zitat Zaikov GE (1985) Quantitative aspects of polymer degradation in the living body. J Macromol Sci, Part C 25:551–597CrossRef Zaikov GE (1985) Quantitative aspects of polymer degradation in the living body. J Macromol Sci, Part C 25:551–597CrossRef
Zurück zum Zitat Zhang N, Zeng C, Wang L, Ren J (2013) Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with epoxy-functional styrene acrylic copolymer as reactive agent. J Polym Environ 21:286–292CrossRef Zhang N, Zeng C, Wang L, Ren J (2013) Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with epoxy-functional styrene acrylic copolymer as reactive agent. J Polym Environ 21:286–292CrossRef
Zurück zum Zitat Zhang J, Ma X, Fan D, Zhu C, Deng J, Hui J, Ma P (2014) Synthesis and characterization of hyaluronic acid/human-like collagen hydrogels. Mater Sci Eng C Mater Biol Appl 43:547–554CrossRef Zhang J, Ma X, Fan D, Zhu C, Deng J, Hui J, Ma P (2014) Synthesis and characterization of hyaluronic acid/human-like collagen hydrogels. Mater Sci Eng C Mater Biol Appl 43:547–554CrossRef
Zurück zum Zitat Zhang X, Battiston KG, McBane JE, Matheson LA, Labow RS, Santerre JP (2016) Design of biodegradable polyurethanes and the interactions of the polymers and their degradation by-products within in vitro and in vivo environments, Chapter 3. In: Cooper SL, Guan J (eds) Advances in polyurethane biomaterials. Woodhead Publishing, Duxford, pp 75–114CrossRef Zhang X, Battiston KG, McBane JE, Matheson LA, Labow RS, Santerre JP (2016) Design of biodegradable polyurethanes and the interactions of the polymers and their degradation by-products within in vitro and in vivo environments, Chapter 3. In: Cooper SL, Guan J (eds) Advances in polyurethane biomaterials. Woodhead Publishing, Duxford, pp 75–114CrossRef
Zurück zum Zitat Zia KM, Noreen A, Zuber M, Tabasum S, Mujahid M (2016) Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review. Int J Biol Macromol 82:1028–1040CrossRef Zia KM, Noreen A, Zuber M, Tabasum S, Mujahid M (2016) Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review. Int J Biol Macromol 82:1028–1040CrossRef
Metadaten
Titel
Biodegradable Polymers for Bone Tissue Engineering
verfasst von
M. Susana Cortizo
M. Soledad Belluzo
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-61288-1_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.